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Abstract. Nfer is a rule-based language for abstracting event streams
into a hierarchy of intervals with data. Nfer has multiple implementa-
tions and has been applied in the analysis of spacecraft telemetry and
autonomous vehicle logs. This work provides the first complexity analysis
of nfer evaluation, i.e., the problem of deciding whether a given interval
is generated by applying rules.
We show that the full nfer language is undecidable and that this de-
pends on both recursion in the rules and an infinite data domain. By
restricting either or both of those capabilities, we obtain tight decidabil-
ity results. We also examine the impact on complexity of exclusive rules
and minimality. For the most practical case, which is minimality with
finite data, we provide a polynomial time algorithm.
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1 Introduction

Nfer is a rule-based language and tool for event stream analysis, developed with
scientists from the National Aeronautics and Space Administration (NASA)’s
Jet Propulsion Laboratory (JPL) to analyze telemetry from spacecraft [20, 18,
19]. Nfer rules calculate data over periods of time called intervals. Nfer compares
and combines these intervals to form a hierarchy of abstractions that is easier for
humans and machines to comprehend than a trace of discrete events. This differs
from traditional Runtime Verification (RV) which computes language inclusion
and returns verdicts. The equivalent problem for nfer, called the evaluation
problem, is to determine if an interval will be present in nfer’s output given a
list of rules and an input trace.

The nfer syntax is based on Allen’s Temporal Logic (ATL) [2] and is designed
for simplicity and brevity in many contexts. When it was originally introduced,
nfer was used to find false positives among warning messages from the Mars
Science Laboratory (MSL), i.e., the Curiosity rover, at JPL [18]. Researchers
found the language to be much more concise than the ad hoc Python scripts
in common use. Nfer has also been deployed to capture disagreements between
parallel Proportional-Integral-Derivative (PID) controllers in an embedded sys-
tem ionizing radiation experiment [26, 19] and to locate unstable gear shifts in
an autonomous vehicle [17].
? This research was partly funded by the ERC Advanced Grant LASSO, the Villum
Investigator Grant S4OS and DIREC, Digital Research Center Denmark.
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Nfer is expressive enough for many applications and termination of the nfer
monitoring algorithm has been conjectured to be undecidable [15]. The intuition
for nfer undecidability is that recursion in its rules is possible and the intervals
nfer computes may carry data from an infinite domain.

Despite this expressiveness, nfer’s implementations have been demonstrated
to be fast in practice. Both the C [16] and Scala [11] versions have been com-
pared against tools such as LogFire and Prolog [19], Siddhi [17], MonAmi and
DejaVu [12], and TeSSLa [14] and in every case found to be faster than the alter-
natives performing the same analysis. The question remains if nfer evaluation
is indeed undecidable and, if so, if there are useful fragments of nfer with a
tractable evaluation problem.

Our Contribution. In this work, we determine the complexity of evaluating dif-
ferent fragments of nfer. We find that any one of several restrictions on the
language permit decidable evaluation and we prove tight bounds for most of
these fragments.

We begin by defining a natural syntactic fragment of nfer using only inclu-
sive rules called inc-nfer. Full nfer supports a form of negation using what
are called exclusive rules, but we show that these are unnecessary to obtain
undecidability. The result relies, instead, on recursion between rules and on in-
tervals carrying data from an infinite domain. Thus, we then examine language
fragments where either or both of these capabilities are restricted. We prove
that, without recursion, inc-nfer evaluation is NExpTime-complete, without
infinite data it is ExpTime-complete, and without either it is PSpace-complete.

We then introduce exclusive rules and examine the full nfer language. It
has been openly questioned what effect negation has on the expressiveness of
nfer [12]. Of note is that recursion in rules must be prohibited when exclusive
rules are used. We prove that, without infinite data, adding exclusive rules has
no effect and nfer evaluation remains PSpace-complete. With infinite data,
however, we prove the problem is in AExpTime(poly).

Finally, we examine the effect of minimality on the complexity of nfer evalu-
ation. Minimality is a so-called meta-constraint on the results of nfer that was a
primary motivator of nfer’s development, since it was discovered existing tools
like Prolog struggled with such meta-constraints [19]. We show that minimality
has a substantial effect on the complexity of nfer evaluation. With infinite data,
we prove the problem is in ExpTime. The most common method of using nfer
is with minimality and finite data, however, and we prove evaluation for this
configuration is in PTime.

All proofs omitted due to space restrictions can be found in the full ver-
sion [21].

Related Work. Nfer is closely related to other classes of declarative programming
systems but it differs from them all in several ways. For example, a rule-based
programming system modifies a database of facts [4, 10]. Unlike these systems,
however, nfer is monotonic and can only add intervals, not remove them. Nfer
also resembles Complex Event Processing (CEP) systems where declarative rules
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are applied to compute information from a trace of events [5, 22, 28]. CEP sys-
tems do not usually include explicit notions of time or temporal relationships,
though, which are central to nfer. In this way, nfer more closely resembles
stream-RV systems [8, 6, 7]. Still, nfer is differentiated from these systems by its
emphasis on temporal intervals and its ATL-based syntax.

Some research has examined the complexity of logics based on ATL, specif-
ically Halpern and Shoham’s modal logic of intervals (HS) [9]. Montanari et
al. showed that the satisfiability problem for the subset of HS consisting of only
begins/begun by and meets is ExpSpace-complete over the natural numbers [25].
Later, they showed that adding the met by operator increases the complexity
such that the language is only decidable over finite total orders [24]. Aceto et
al. identified the expressive power of all fragments of HS over total orders as
well as only dense total orders [1]. Nfer is not a modal logic, however, and these
complexity results are not relevant to its evaluation problem.

2 The Inclusive nfer Language

The nfer language supports two types of rules: inclusive rules and exclusive rules.
This section desribes the inclusive-nfer formalism, subsequently abbreviated
inc-nfer, that supports only inclusive rules. Inc-nfer is sufficiently expressive
to obtain an undecidability result and we find that initially omitting exclusive
rules simplifies our presentation. Inc-nfer is also a natural subset of nfer that
was first introduced in [18]. It supports many use cases, including the MSL case-
study described above. The implementation of nfer written in Scala at JPL [11,
19] also supports only inclusive rules. We expand our analysis to include exclusive
rules in Section 4 while Section 5 addresses minimality, an important extension
of nfer semantics. Note that, to improve comprehensibility and simplify later
proofs, the semantics presented here differs slightly from prior work but these
changes do not affect the language capabilities.

Preliminary Notation. We denote the set of nonnegative integers as N. The set
of Booleans is given as B = {true, false}. We fix a finite set I of identifiers. M is
the type of maps, where a map M ∈M is a partial function M : I 7→ N ∪ B.

An event represents a named state change in an observed system. An event
is a triple (η, t,M) where η ∈ I is its identifier, t ∈ N is the timestamp when
it occurred, and M ∈ M is its map of data. The type of an event is given by
E = I × N×M. A sequence of events τ ∈ E∗ is called a trace.

Intervals represent a named period of state in an observed system. An interval
is a 4-tuple (η, s, e,M) where η ∈ I is its identifier, s, e ∈ N are the starting and
ending timestamps where s ≤ e, and M ∈ M is its map of data. The type of
intervals with data is I = I × N× N×M. A set of intervals is called a pool and
its type is given by P = 2I. We say that an interval i = (η, s, e,M) is labeled by
η. We define the functions id(i) = η, start(i) = s, end(i) = e, and map(i) = M .

Syntax. Inclusive rules test for the existence of two intervals matching con-
straints. When such a pair is found, a new interval is produced with an identifier
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specified by the rule. The new interval has timestamps and a map derived by
applying functions, specified in the rule, to the matched pair of intervals. We
define the syntax of these rules, including mathematical functions to simplify
the presentation, as follows:

η ← η1 ⊕ η2 where Φ map Ψ

where, η, η1, η2 ∈ I are identifiers, ⊕ ∈ {before,meet,during, coincide, start,
finish,overlap, slice} is a clock predicate on three intervals (one for each of
η, η1, and η2), Φ : M×M→ B is a map predicate taking two maps and returning
a Boolean representing satisfaction of a constraint, and Ψ : M ×M → M is a
map update taking two maps and returning a map.

We omit the precise syntax for specifying map predicates and updates, but
we require that these functions are limited to only simple arithmetic operations.
This matches what is possible using the C nfer tool [14]. Specifically, map pred-
icates and map updates must be expressible using the standard mathematical
operations: addition, subtraction, multiplication, division, modulo, and the com-
parisons: <,≤, >,≥,= on natural numbers, and the Boolean operators: ∧,∨,¬.
This limitation excludes exponentiation and any form of recursion in the func-
tions. Since we do not support real numbers in the theory, division is limited to
integer quotients. These decisions are discussed in Section 6.

Semantics. Inc-nfer defines how rules are interpreted to generate pools of
intervals from inputs. The semantics utilizes functions, referenced by the rule
syntax, that specify the temporal and data relationships between intervals. The
semantics of the nfer language is defined in three steps: the semantics R of
individual rules on pools, the semantics S of a specification (a list of rules) on
pools, and finally the semantics T of a specification on traces of events.

We first define the semantics of inclusive rules with the interpretation func-
tion R. Let ∆ be the type of rules. Semantic functions are defined using the
brackets [[ _]] around syntax being given semantics.

R [[ _]] : ∆ → P → P
R [[ η ← η1 ⊕ η2 where Φ mapΨ ]] π =

{ i ∈ I : i1,i2 ∈ π .
id(i) = η ∧ id(i1) = η1∧ id(i2) = η2 ∧
⊕(i ,i1,i2) ∧ Φ (map(i1),map(i2)) ∧
map(i) = Ψ(map(i1),map(i2)) }

In the definition, a new interval i is produced when two existing intervals in
π match the identifiers η1 and η2, the temporal constraint ⊕, and the map
constraint Φ. ⊕ defines the start and end timestamps of i and Ψ defines its map.

The possibilities referenced by ⊕ are shown in Figure 1. These clock predi-
cates are based on ATL and described formally in previous definitions of nfer [18,
19]. They relate two intervals using the familiar ATL temporal operators and also
specify the start and end timestamps of the produced intervals. In the figure, the
two matched intervals are shown as dark-gray boxes where time flows from left
to right and the light-gray box is the produced interval. For example, given inter-
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Fig. 1. nfer clock predicates for inclusive rules

vals i, i1, i2 where id(i) = A, id(i1) = B and id(i2) = C, A← B meet C holds
when end(i1) = start(i2), start(i) = start(i1), and end(i) = end(i2).

The following one-step interpretation function S defines the semantics of a
finite list of rules, also called a specification. Given a specification δ1 · · · δn ∈ ∆∗
and a pool π ∈ P, S[[_]] returns a new pool obtained by recursively applying
R[[_]] to every rule in δ1 · · · δn in order, where each is called using the union of
π with the new intevals returned thus far.

S [[_]] : ∆∗ → P→ P

S [[ δ1 · · · δn ]] π =
{
S [[ δ2 · · · δn ]] (π ∪ R [[ δ1 ]] π ) if n > 0
π otherwise

Inc-nfer specifications may contain recursion in the rules, so one application
of the specification may not be sufficient to produce all of the intervals. The
interpretation function Tinc[[_]] for inclusive nfer defines the semantics of a spec-
ification on a pool by applying S until the inflationary fixed point is reached.
Tinc[[_]] : ∆∗→ P → P
Tinc[[δ1 · · · δn ]] π =

⋃
i>0 πi. π1 = π ∧ πi+1 = S [[ δ1 · · · δn ]] (πi)

To maintain consistency with prior work and simplify our presentation, we also
overload Tinc[[_]] to operate on a trace of events τ ∈ E∗ by first converting τ to
the pool {init(e) : e is an element of τ} where init(η, t,M) = (η, t, t,M).

Example 1. Here, we present an example of an inc-nfer specification with rules
useful for our complexity analysis. Fix I = {ηj : 0 ≤ j ≤ n} ∪ {d} and consider
the specification Dn = δ1 · · · δn where δj is the rule
ηj+1 ← ηj coincide ηj wherem1,m2 7→ m1=m2 mapm1,m2 7→{d 7→ m1(d)2}.
Here, m1 and m2 denote the maps of the intervals matched by the left and right
side of the coincide operator and d represents the only element in their domain.

When applying this specification to the trace τ = (η0, 0, {d 7→ 2}) we obtain
Tinc[[Dn]] τ = {(η0, 0, 0, {d 7→ 2}), (η1, 0, 0, {d 7→ 4}), . . . , (ηn, 0, 0, {d 7→ 22n})}.

Remark 1. In many of our lower bound proofs, the timestamps of intervals are
irrelevant. For the sake of readability, we will therefore often disregard the times-
tamps and denote intervals by (η, y0, . . . , yk) where {y0, . . . , yk} is the image of
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the map function of the interval. Here, we assume a fixed order of the map
domain that will be clear from context.

Also, note that the rules δj in Example 1 produce an interval i′ labeled by
ηj+1 from an interval i such that i and i′ have the same timestamps and the map
value of i′ is obtained by squaring the map value of i. Many of the rules we use
in our lower bounds proofs have this format. Again, for the sake of readability,
we will not spell out those rules but instead say that the rule produces the
interval (ηj+1, y

2) from an interval of the form (ηj , y).

We are interested in the nfer evaluation problem: Given a specification D,
a trace τ of events, and a target identifier ηT , is there an ηT -labeled interval
in Tinc[[D]] τ? Here, we measure the size of a single rule in D by the sum of
the length of its map predicate and map update measured in their number of
arithmetic and logical operators, with numbers encoded in binary. The size of an
event is the sum of the binary encodings of its timestamps and its map values.
We disregard the identifiers, as their number is bounded by the number of events
in the input trace and the number of rules.

3 Complexity Results for Inclusive nfer

In this section, we determine the complexity of the inc-nfer evaluation problem.
In its most general form it is shown to be undecidable, but we show decidability
for three natural fragments.

The undecidability result relies on the recursive nature of inc-nfer, i.e., an
η-labeled interval can be (directly or indirectly) produced from an another η-
labeled interval, and on the fact that the map functions range over the natural
numbers, i.e., we have access to an infinite data domain.

Theorem 1. The evaluation problem for inc-nfer is undecidable.

Proof. We show how to simulate a two-counter Minsky machine [23] with inc-nfer
rules so that the machine terminates iff an interval with a given target identifier
can be generated by the rules.

Formally, a two-counter Minsky machine is a sequence
(0 : I0)(1 : I1) · · · (k − 2 : Ik−2)(k − 1 : STOP),

of pairs (` : I`) where ` is a line number and I` for 0 ≤ ` < k − 1 is one of
INC(Xi), DEC(Xi), or IF Xi=0 GOTO `′ with i ∈ {0, 1} and `′ ∈ {0, · · · , k − 1}.

A configuration of the machine is a triple (`, c0, c1) consisting of a line num-
ber ` and the contents ci ∈ N of counter i. The semantics is defined as expected
with the convention that a decrement of a zero counter has no effect. The prob-
lem of deciding whether the unique run of a given two-counter Minsky machine
starting in the initial configuration (0, 0, 0) reaches a stopping configuration (i.e.,
one of the form (k − 1, c0, c1)) is undecidable [23].

This problem is captured with inc-nfer as follows: We encode a configura-
tion (`, c0, c1) by an interval with identifier ` and two map values c0, c1. These
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intervals use the same timestamps so we drop them from our notation and also
write (`, c0, c1) for the interval encoding that configuration.

For every line number 0 ≤ ` < k−1 we have one or two rules that are defined
as follows (here, we only consider i = 0, the rules for i = 1 are analogous):

– I` = INC(X0): We have a rule producing the interval (`+ 1, c0 + 1, c1) from
an interval of the form (`, c0, c1).

– I` = DEC(X0): We have two rules, one producing the interval (`+1, c0−1, c1)
from an interval of the form (`, c0, c1) with c0 > 0, and one producing the
interval (`+ 1, c0, c1) from an interval of the form (`, c0, c1) with c0 = 0.

– I` = IF X0=0 GOTO `′: We have two rules, one producing the interval (`′, c0, c1)
from an interval of the form (`, c0, c1) with c0 = 0, and one producing the
interval (`+ 1, c0, c1) from an interval of the form (`, c0, c1) with c0 > 0.

Then, we have an interval labeled by k − 1 in the fixed point iff the machine
reaches a stopping configuration.

As already discussed, the undecidability relies both on recursion in the rules
and on the map functions having an infinite range. In the following, we show
that restricting one of these two aspects allows us to recover decidability. In
fact, we give tight complexity bounds for all three fragments. We continue by
introducing some necessary notation to formalize these two restrictions.

First, recall that a map of an interval is a partial function from I to N ∪ B,
i.e., it has an infinite range. We will consider the evaluation problem restricted
to intervals with maps that are partial functions from I to {0, 1, . . . , k − 1} ∪ B
with a bound k given in binary and all arithmetic operations performed modulo
k. We denote the fixed point resulting from these semantics by T k

inc[[_]].
Second, for a rule η ← η1 ⊕ η2 where Φ map Ψ we say that η appears

on the left-hand side and the ηi appear on the right-hand side. An inc-nfer
specification D ∈ ∆∗ forms a directed graph G(D) over the rules in D such
that there is an edge from δ to δ′ iff there is an identifier η that appears on the
left-hand side of δ and the right-hand side of δ′. We say that D contains a cycle
if G(D) contains one; otherwise D is cycle-free.

We begin our study of decidable fragments of inc-nfer by considering both
restrictions at the same time.

Theorem 2. The cycle-free inc-nfer evaluation problem with finite data is
PSpace-complete.

Proof. We only prove the lower bound here, the upper bound is shown for full
nfer in Theorem 5. We proceed by a reduction from TQBF, the problem of de-
termining whether a formula of quantified propositional logic evaluates to true
(see, e.g., [3] for a detailed definition), which is PSpace-hard. So, fix such a
formula ϕ. Let πj for j ≥ 1 denote the j-th prime number. We assume without
loss of generality that ϕ = Q2x2Q3x3 · · ·Qπnxπn

∧m
i=1(`i,1 ∨ `i,2 ∨ `i,3) where

each Qπj is in {∃,∀}, and each `i,i′ is either xπj or ¬xπj for some j. As we
label variables by prime numbers, we can uniquely identify a variable valua-
tion V ⊆ {xπj : 1 ≤ j ≤ n} by the number

∏
xπj∈V

πj . As the map values we will
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consider only have to encode valuations, and are therefore bounded by
∏
j≤n πj ,

we can use the bound 1 +
∏
j≤n πj on the map values we consider.

We present three types of rules:

1. Rules to generate every possible variable valuation (encoded by an interval
whose map contains the number representing the valuation).

2. A rule to check whether a valuation satisfies
∧n
i=1(`i,1 ∨ `i,2 ∨ `i,3).

3. Rules to simulate the quantifier prefix to check whether the full formula
evaluates to true.

Let us explain all steps in detail. As all intervals in this proof will have the
same timestamps, we will drop those to simplify our notation. Furthermore, the
map of an interval will contain a single integer value. For these reasons, we
denote intervals by (η, s) where η is an identifier and s is the map value.

To generate the valuations, we start with the trace containing only a sin-
gle fixed event that yields the interval (G0, 1). Further, for 1 ≤ j ≤ n we have
rules producing the intervals (Gj , s · πj) and (Gj , s) from an interval of the
form (Gj−1, s) for some s. The fixed point reached by applying these rules con-
tains the 2n intervals of the form (Gn, s) where s encodes a variable valuation.

In the valuation encoded by some s, a variable xπj evaluates to true if s mod
πj = 0 and evaluates to false if s mod πj 6= 0. Hence, to check whether the
valuation encoded by some s satisfies

∧m
i=1(`i,1 ∨ `i,2 ∨ `i,3) we have a rule that

produces the interval (Ck, s) from an interval of the form (Gk, s) for some s such
that

∧m
i=1(ψi,1∨ψi,2∨ψi,3) evaluates to true, where ψi,i′ is equal to s mod πj = 0

if `i,i′ = xπj , and where ψi,i′ is equal to s mod πj > 0 if `i,i′ = ¬xπj .
We now simulate the quantifier prefix. Intuitively, we check whether partial

variable valuations cause the formula to hold. We do so by the following rules:
If the variable xπj is existentially quantified, we have a rule producing the in-
terval (Cj−1, s) from an interval of the form (Cj , s) with s mod πj > 0, and a
rule producing the interval (Cj−1, s/πj) from an interval of the form (Cj , s) with
s mod πj = 0. So, to generate an interval labeled by Cj−1 at least one interval
labeled by Cj has to exist, and their maps must be compatible.

Finally, if the variable xπj is universally quantified, we have a rule producing
the interval (Cj−1, s) from two intervals of the form (Cj , s) and (Cj , s·πj) (which
can be done using a coincide-rule). Thus, to obtain an interval labeled by Cj−1
both intervals labeled by Cj with corresponding map values have to exist.

An induction shows that a partial valuation V ⊆ {xπj : 1 ≤ j ≤ n′} for
some 0 ≤ n′ ≤ n satisfies Qπn′+1xπn′+1 · · ·Qπnxπn

∧m
i=1(`i,1 ∨ `i,2 ∨ `i,3) iff the

interval (Cn′ ,
∏
xπj∈V

πj) is generated by applying these rules. So, for n′ = 0
we obtain the correctness of our reduction: The formula ϕ evaluates to true iff
(C0, 1) is in the fixed point induced by the rules above.

Furthermore, the rules above are cycle-free, there are linearly many rules in
the number n of variables and each rule is of polynomial size in the size of ϕ.
Finally, as πj ≤ j(ln j + ln ln j) for all j ≥ 6 [27], all numbers appearing in the
maps of the intervals are bounded by∏n

j=1
πj ≤ c ·

∏n

j=1
j(ln j + ln ln j) ≤ c · (n(lnn+ ln lnn))n
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whose binary representation is polynomial in the size of ϕ. Here, c is some
constant that is independent of n.

Now, we turn our attention to the remaining two fragments obtained by
considering finite-data with cycles and cycle-free specifications with infinite data.
In both cases, we again prove tight complexity bounds. For both upper bounds,
we rely on algorithms searching for witnesses for the existence of an interval in
the fixed point. As these arguments are used in multiple proofs, we introduce
them first in a general format. So, fix some specification D and some trace τ of
events. If i is an interval in Tinc[[D]] τ , then either there is an event e in τ such
that init(e) = i (we say that i is initial in this case) or there are intervals i1, i2
in Tinc[[D]] τ and a rule δ ∈ D such that i is obtained by applying δ to i1 and i2.
So, for every interval i0 in Tinc[[D]] τ there is a binary (witness) tree whose nodes
are labeled by intervals in Tinc[[D]] τ , whose root is labeled by i0, whose leaves
are labeled by initial intervals, and where the children of a node labeled by i are
labeled by i1 and i2 such that there is a rule δ so that i is obtained by applying
δ to i1 and i2. Further, we can assume without loss of generality that each path
in the tree does not contain a repetition of an interval (if it does we can just
remove the part of the tree between the repetitions). Hence, the height of the
tree is bounded by the number of intervals. Furthermore, if D is cycle-free then
the height of a witness tree is also bounded by the number of rules in D. Note
that the same arguments also apply to T k

inc[[D]] τ in case we deal with finite data.

Proposition 1. An interval is in Tinc[[D]] τ (T k
inc[[D]] τ) iff it has a witness tree.

We continue by settling the case of specifications with cycles, but restricted
to finite data.

Theorem 3. The inc-nfer evaluation problem with finite data is ExpTime-
complete.

Proof. We first prove the lower bound by reducing from the word problem for
alternating polynomial space Turing machines (see, e.g., [3] for detailed defini-
tions). As ExpTime = APSpace, this yields the desired lower bound. Thus, fix
an alternating polynomial space Turing machineM, i.e., there is some polyno-
mial p such thatM uses at most space p(|w|) when started on input w. Let us
also fix some input w forM. We construct an instance of inc-nfer that simu-
lates a run ofM on w. To simplify our construction, we make some assumptions
(all without loss of generality):

– The set Q of states ofM is of the form {1, 2, . . . , q} for some q ∈ N and 1 is
the initial state.

– The tape alphabet Γ ofM is equal to {0, 1, . . . , 9} and 0 is the blank symbol.
– Every run tree of M has only finite branches, i.e., M terminates on every

input. To this end, we assume the existence of a set of terminal states, which
is split into accepting and rejecting ones.

– Every nonterminal configuration (one with a nonterminal state) has exactly
two successor configurations. Such states are either existential or universal.
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So, a configuration ofM is of the form `qr with q ∈ Q and `, r ∈ Γ ∗ such that
|`|+ |r| = p(|w|), with the convention that the head is on the first letter of r.

For c ∈ Γ ∗, let cR denote the reverse of c. Due to our assumption on Γ
we can treat ` and rR as natural numbers encoded in base ten. We uniquely
identify a configuration `qr by the triple (`, q, rR) of natural numbers. The initial
configuration of M on w is encoded by the triple (0, 1, wR) representing that
the tape to the left of the head has only blanks, the machine is in the initial
state 1, and w is to the right of the head with the remaining cells of the tape
being blank.

This encoding allows us to read the tape cell the head is currently pointing
to, update the tape cell the head is pointing to, and move the head by simple
arithmetic operations. For example, whether the head points to a cell containing
a 3 is captured by rR mod 10 being 3, and writing a 7 to the cell pointed to
by the head is captured by adding −(rR mod 10) + 7 to rR. Finally, moving
the head to, say, the right, is captured by multiplying ` by 10 and then adding
rR mod 10 to it, and then dividing rR by 10 (which is done without remainder
and therefore removes the last digit of rR). In the following, we use intervals
of the form (A, `, q, rR) to encode the configuration `qr of M. Here, A is some
identifier and we disregard timestamps, as all intervals have the same start and
end. Hence, `, q, and rR are three map values of the interval.

We now describe the rules simulating M on w. We start with some fixed
event that yields the interval (G, 0, 1, wR) encoding the initial configuration.
As described above, the computation of a successor configuration can be imple-
mented using arithmetic operations. Thus, given the interval encoding the initial
configuration, one can write rules (one for each transition ofM) that generate
the set of all configurations, encoded as intervals of the form (G, `, q, rR). Fur-
thermore, one can write a rule that produces the interval (A, `, q, rR) from every
interval (G, `, q, rR) with an accepting q.

Now, we describe rules to compute the set of accepting configurations, i.e., the
smallest set A of configurations that contains all those with an accepting terminal
state, all existential ones that have a successor in A, and all universal ones that
have both successors in A. For every transition t from an existential state q,
there is a rule to produce the interval (A, `, q, rR) if the intervals (G, `, q, rR) and
(A, `′, q′, rR′) already exist, where (`′, q′, rR′) encodes the configuration obtained
by applying the transition t to the configuration encoded by (`, q, rR). Thus, to
declare an existential configuration as accepting at least one of its successor
configurations has to be already declared as accepting.

Now, let us consider universal configurations. Due to our assumption, for
every pair of a state and a tape symbol, there are exactly two transitions t1
and t2 that are applicable. There are two rules for this situation. The first one
produces the interval (B, `, q, rR) if the intervals (G, `, q, rR) and (A, `′, q′, rR′)
already exist, where (`′, q′, rR′) encodes the configuration obtained by apply-
ing the transition t1 to the configuration encoded by (`, q, rR). The second one
produces the interval (A, `, q, rR) if the intervals (B, `, q, rR) and (A, `′, q′, rR′)
already exist, where (`′, q′, rR′) encodes the configuration obtained by applying

10



Algorithm 1 Algorithm checking the existence of a witness tree
Input: Specification D, trace τ , bound k, target identifier ηT

1: n := 0
2: nondeterministically guess interval i labeled by ηT

3: while n < b(D, τ, k) and i is not initial do
4: n := n+ 1
5: nondeterministically guess intervals i1, i2 and δ ∈ D such that i is obtained

by applying δ to i1 and i2
6: universally pick i := ij for j ∈ 1, 2
7: if i is initial then return accept
8: else return reject

the transition t2 to the configuration encoded by (`, q, rR). Thus, to declare a
universal configuration as accepting both of its successor configurations have to
be already declared as accepting.

Finally, there is a rule producing an interval with identifier ηT from the
interval (A, 0, 1, wR), indicating that the initial configuration is accepting. Thus,
the fixed point contains an interval labeled by ηT iffM accepts w.

It remains to show that the specification has the required properties. It is of
polynomial size and each rule has polynomial size (both measured in |M|+ |w|).
Further, all numbers used in the intervals are bounded by max{|Q|, 10p(|w|)},
whose binary representation is bounded polynomially in |M|+ |w|.

Now, we prove the upper bound. We are given a specification D, an input
trace τ of events, a k ∈ N (given in binary), and a target label ηT and have
to determine whether the fixed point T k

inc[[D]] τ contains an interval labeled by
ηT . We describe an alternating polynomial space Turing machine solving this
problem by searching for a witness tree. APSpace = ExpTime yields the result.

To this end, we rely on the following properties.

1. Every interval in T k
inc[[D]] τ can be stored in polynomial space, as every value

in its map can be stored using log k bits, and there are only linearly many
such values (measured in |D|+ |τ |).

2. There are only exponentially many intervals in T k
inc[[D]] τ , e.g.,

b(D, τ, k) = ι · t2 · k|D|+|τ | ≤ ι · |τ |2 · 2(log k)(|D|+|τ |)

is a crude upper bound. Here, ι is the number of identifiers appearing in D
and τ and t is the number of timestamps in τ (recall that inc-nfer does
not create new timestamps).

3. Given three intervals i, i1, i2 and a rule δ ∈ D one can determine in polyno-
mial space whether i is obtained by applying δ to i1 and i2.

Using alternation, Algorithm 1 determines whether a witness tree exists
whose root is labeled by ηT and whose height is bounded by b. Due to Proposi-
tion 1, this is equivalent to an interval labeled by ηT being in T k

inc[[D]] τ . Due to
the above properties, one can easily implement the algorithm on an alternating
polynomial space Turing machine, yielding the desired upper bound.

11



Finally, we consider the last fragment: cycle-free specifications with infinite
data. A crucial aspect here is that cycle-free specifications imply an upper bound
on the map values of intervals in the fixed point, as each interval in the fixed point
can be generated by applying each rule at most once. For the lower bound, we
generate large numbers using a set of cycle-free rules and encode configurations
using these numbers as before.

Theorem 4. The cycle-free inc-nfer evaluation problem with infinite data is
NExpTime-complete.

4 The Full nfer Language

This section introduces the second type of nfer rules, called exclusive rules, that
test for the existence of one interval and the absence of another interval matching
constraints. These rules were introduced in [19] and they, together with inclusive
rules, complete the nfer language. We define the syntax of these rules, including
mathematical functions to simplify the presentation, as follows:

η ← η1 unless 	 η2 where Φ map Ψ

where, η, η1, η2 ∈ I are identifiers, 	 ∈ {after, follow, contain} is a clock pred-
icate on two intervals (one for each of η1 and η2), and Φ and Ψ are the same as
in inclusive rules. We say that an exclusive rule includes η1 and excludes η2.

Exclusive rules share many features with inclusive rules but they require ad-
ditions to the inc-nfer semantics that were omitted in Section 2 for brevity.
Notably, these changes to the semantics produce equivalent results when evalu-
ating inclusive rules. The following definition gives semantics to exclusive rules:

R [[ η ← η1 unless 	 η2 where Φ mapΨ ]] π =
{ i ∈ I : i1∈ π . id(i) = η ∧ id(i1) = η1∧

start(i) = start(i1) ∧ end(i) = end(i1) ∧
map(i) = Ψ(map(i1),{ }) ∧
¬ ( ∃ i2∈ π . id(i2) = η2 ∧
	(i1,i2) ∧ Φ (map(i1),map(i2)) ) }

Like with inclusive rules, exclusive rules match intervals in the input pool π to
produce a pool of new intervals. The difference is that exclusive rules produce
new intervals where one existing interval in π matches the identifier η1 and no
intervals exist that match the identifier η2 such that the clock predicate 	 and
the map predicate Φ hold for the η1-labeled and the η2-labeled interval.

The three possibilities referenced by 	 are shown in Figure 2. These clock
predicates are based on ATL and described formally in a previous definition of
nfer [19]. They relate two intervals using familiar ATL temporal operators while
the timestamps of the produced interval are copied from the included interval
rather than being defined by the clock predicate. In the figure, the excluded
interval labeled C is shown as a rectangle with a dotted outline and the pro-
duced interval labeled A is always the same as the included interval labeled B.
For example, given intervals i, i1, i2 where id(i) = A, id(i1) = B and id(i2) = C,
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A ← B unless after C A ← B unless follow C A ← B unless contain C

C

A

B C

A

B C

A

B

Fig. 2. nfer clock predicates for exclusive rules

A← B unless follow C holds when end(i2) = start(i1), start(i) = start(i1), and
end(i) = end(i1).

Exclusive rules are forbidden in specifications with cycles because the in-
tervals they produce depend on the persistent non-existence of other intervals.
When cycles exist in a specification, rules are evaluated multiple times and each
evaluation may add intervals. Exclusive rules may have non-deterministic be-
havior in a specification with cycles because the intervals they exclude may be
produced either before or after the exclusive rule is evaluated. The order in which
rules are evaluated may also affect the result of applying exclusive rules for this
reason, which motivates a generalization of the Tinc[[_]] (resp. T k

inc[[_]]) function.
Tfull [[_]] : ∆∗ → P→ P

Tfull [[ δ1 · · · δn ]] π =
{
S [[ topsort(δ1 · · · δn) ]] (π ) if ∃ topsort(δ1 · · · δn)
Tinc [[ δ1 · · · δn ]] (π ) otherwise

where topsort is a topological sort of the directed graph G(D) described in
Section 3 and Tinc[[_]] is the interpretation function defined in Section 2. A topo-
logical sort, which can be computed in linear time [13], only exists in a cycle-free
specification. In that case, topsort orders the rules such that the fixed-point
computation of Tinc[[_]] can be short-circuited, since one application of S[[_]] is
sufficient to produce the final pool. The results of Tfull[[_]] are independent of the
topological sort, as any such ordering will guarantee that all intervals matched
by a rule exist before it is applied using R[[_]] .

In the following, we study the complexity of the cycle-free nfer evaluation
problem with finite and infinite data, starting with the former.

Theorem 5. The cycle-free nfer evaluation problem with finite data is PSpace-
complete.

Proof. The lower bound already holds for the special case of inc-nfer (see
Theorem 2), so we only need to prove the upper bound. To this end, we show
how to witness in alternating polynomial time that a given interval is in the
fixed point, which yields the desired bound due to APTime = PSpace. Note
that we cannot just search for a witness tree as for inc-nfer, as we also have
to handle exclusive rules.

Intuitively, an exclusive rule requires the existence of one interval in the fixed
point and the non-existence of other intervals in the fixed point. We have seen
how to capture existence of an interval via the existence of a witness tree. Hence,
we can capture the non-existence of an interval via the non-existence of a witness
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tree. As we construct an alternating algorithm, we use duality to capture the
non-existence of a witness tree and switch between an existential and a universal
mode every time the non-existence of an interval is to be checked.

As in Algorithm 1, the algorithm keeps track of a single interval and ap-
plies rules in a backwards fashion. Using alternation, it guesses and verifies a
tree structure witnessing the (non-)existence of intervals in the fixed point. To
simulate exclusive rules, it uses a Boolean flag f to keep track of the parity of
the number of exclusive rules that have been simulated, initialized with zero. If
f is zero, then a rule δ is guessed nondeterministically. If this rule is inclusive,
two intervals i1 and i2 are guessed nondeterministically such that the current
interval i is obtained from i1 and i2 by applying δ. Then, the current interval
is updated by universally picking i := i1 or i := i2, so that both choices are
checked. This case is similar to Algorithm 1.

On the other hand, if the rule is exclusive, then a single interval i1 is guessed
nondeterministically and another interval i2 is picked universally so that δ in-
cludes i1, excludes i2, and i is the result of applying δ to i1. Now, the current
interval is updated by universally picking i := i1 or i := i2, so that both choices
are checked. In the second case, the flag is toggled to signify that another exclu-
sive rule is simulated.

In the case where f is equal to one, the approach is just dual, i.e., we switch
existential and universal choices. As the input specification is cycle-free, we need
to simulate at most |D| applications of a rule. Finally, acceptance depends on
whether the value of the flag, i.e., while the flag is zero the last interval has to
be initial (i.e., in the input trace) while it has to be non-initial if the flag is one.

The algorithm runs in alternating polynomial time as each run simulates at
most |D| rule applications and each application can be implemented in determin-
istic polynomial time due to the encodings of the map values and time stamps
being bounded by |D|+ |τ |.

Finally, we consider the case of infinite data. Here, the upper bound we obtain
is AExpTime(poly), the class of problems decided by alternating exponential-
time Turing machines with a polynomial number of alternations between exis-
tential and universal states.

Theorem 6. The cycle-free nfer evaluation problem with infinite data is
NExpTime-hard and in AExpTime(poly).

5 Minimality

This section discusses the minimality restriction and its implications on the com-
plexity of the nfer evaluation problem. Traditionally, nfer supports the concept
of a selection function that may modify the results of R[[_]] [19]. The reason is
to support minimality, which filters any intervals that are not minimal in their
timestamps. Although minimality was originally introduced for its utility [18],
it has positive implications for evaluation complexity as well.
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B C

A

B C

A

Fig. 3. Minimality discards the checkered interval produced by A← B before C

Figure 3 shows the effect of minimality on the evaluation of a single rule.
In the figure, time moves from left to right and the dark-gray intervals are the
inputs to R[[A← B before C where true map { }]] . This evaluation produces
the three intervals labeled A but minimality discards the longer interval with a
checkerboard pattern because there are shorter A intervals in the same period.

Given a pool π of existing intervals and a pool π′ of intervals to add, the
minimality function returns only the minimal intervals in π′ that do not sub-
sume any interval in π. That is, the intervals where there is not another interval
with the same identifier with a shorter duration during the same time. No new
intervals will be produced with the same identifier and timestamps when one
already exists in π. If there are multiple intervals with the same identifier and
the same timestamps in π′, the one with the least map is retained (with respect
to some fixed ordering of maps). We define minimality as the following:

minimality : P× P→ P
minimality (π′, π) =

{(η, s, e,M) ∈ π′ : @(η, s1, e1,M1) ∈ π. s ≤ s1 ∧ e1 ≤ e} ∩
{(η, s, e,M) ∈ π′ : @(η, s2, e2,M2) ∈ π′.(s ≤ s2 ∧ e2 < e) ∨ (s < s2 ∧ e2 ≤ e)} ∩
{(η, s, e,M) ∈ π′ : @(η, s3, e3,M3) ∈ π′. s = s3 ∧ e = e3 ∧M3 ≺M}
where ≺ is a total order over M used as a tiebreaker when more than one new
intervals exist in π′ with equal identifiers and timestamps.

For the nfer evaluation problem under minimality we replace R[[_]] in the
semantics with an interpretation function that applies minimality to the result
of R[[_]] .

Rmin[[_]] : ∆ → P → P
Rmin[[δ ]] π = minimality (R[[δ]]π,π )

Theorem 7. The nfer evaluation problem with finite data and minimality is
in PTime.

Proof. Consider an instance with specification D, trace τ , and bound k on the
map values. Due to minimality, the size of T k

full[[D]] τ is bounded by (ι · t2) + |τ |,
where ι is the number of identifiers in D and τ and t is the number of timestamps
in τ . Note that this bound is independent of k.

Also, map values and timestamps can be represented with polynomially many
bits in the size of D and τ . Hence, we can compute T k

full[[D]] τ and check whether
it contains an interval labeled by the target identifier in polynomial time.

A similar approach works for infinite data.
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Theorem 8. The nfer evaluation problem with infinite data and minimality is
in ExpTime.

6 Discussion and Conclusion

We have studied the complexity of the nfer evaluation problem. It is undecid-
able in the presence of recursion and infinite data, even without exclusive rules.
In contrast, regardless of the presence of exclusive rules, the evaluation prob-
lem is decidable for cycle-free specifications or with respect to finite data. Most
importantly for applications, the problem is in PTime if we impose the minimal-
ity constraint and restrict to finite data. While we only allow natural numbers
and Booleans as map values, our upper bounds also hold for more complex data
types, i.e., signed numbers, (fixed-precision) floating point numbers, and strings,
which were included in the original definitions [18, 19].

Most of our complexity bounds are tight, but we leave two gaps. First, the
cycle-free nfer evaluation problem with infinite data is NExpTime-hard and
in AExpTime(poly). Recall that the lower bound already holds for inc-nfer,
i.e., without exclusive rules, while the polynomial number of alternations in the
upper bound are used to simulate exclusive rules (our algorithm requires one
alternation per exclusive rule). One approach to close this gap is to capture
alternations of a Turing machine using exclusive rules.

Secondly, the nfer evaluation problem with infinite data and minimality
is in ExpTime while no nontrivial lower bounds are known. The upper bound
follows from the fact that the map values may be of doubly-exponential size, i.e.,
they require exponential time to be computed. However, minimality is a very
restrictive constraint that in particular severely limits the ability to simulate
nondeterministic computations. Coupled with the fact that minimality implies
a polynomial upper bound on the number of intervals in the fixed point, this
explains the lack of a nontrivial lower bound.

All our lower bound proofs only use intervals with the same timestamps,
i.e., the complexity stems from the manipulation of data instead of temporal
reasoning. Similarly, the upper bound proofs are mostly concerned with encoding
of data and the temporal reasoning is trivial. One of the reasons is that nfer
rules do not create new timestamps for intervals; newly created intervals can
only use timestamps that already appear in the input trace. This leaves only a
polynomial number of combinations of start points and end points, which is (at
least) exponentially smaller than the number of data values. For this reason, we
propose to investigate data-free nfer to analyze the complexity of the evaluation
problem with respect to the choice of temporal operators. In this case, there are
only polynomially many possible intervals in the fixed point. So, a trivial upper
bound on the complexity is PTime, but we expect better results for fragments.

Another interesting fragment is the combination of cycles and exclusive rules.
As long as exclusive rules lie outside cycles the deterministic semantics can be
defined. In the full version of this paper [21] we show that this fragment has an
ExpTime-complete evaluation problem when restricted to finite data.
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