
nfer – A Tool for Event Stream Abstraction

Sean Kauffman

Aalborg University, Denmark

Abstract. This work describes nfer, an open-source tool for event-
stream abstraction and processing. Nfer implements the Runtime Ver-
ification logic of the same name, providing programming interfaces in
C, R, and Python. Rules that dictate nfer’s behavior can be written
in an external Domain-Specific Language (DSL), mined from historical
traces, or given using an internal DSL in Python. The tool is designed
for efficient online monitoring of event streams and can also operate as
an offline tool to process completed logs.

1 Introduction

The exponential increase in the size and complexity of embedded software over
time has led to a similar explosion in traces produced by that software [8].
Comprehending and verifying those traces at runtime requires tools with diverse
interfaces that can handle large datasets and integrate with existing code.

Nfer is a formalism for abstracting and monitoring event streams [15, 13,
14] with an open-source implementation well-suited for a variety of tasks. The
nfer language is based on Allen’s Temporal Logic (ATL) [2] and is designed for
expressing relationships between concurrent executions [12]. The implementation
is available at http://nfer.io under the GPLv3 license and includes a command-
line interpreter, the ability to learn rules from historical traces [11], an embedded
monitor compiler, and language integrations with both R and Python.

Nfer combines elements of Complex Event Processing (CEP) systems [4, 16,
17], stream-processing frameworks [5, 7], and rule-based logics [3, 9]. Like many
of these tools, nfer applies rules to event streams to generate new facts either
online or offline. However, nfer treats time as a first-class citizen and produces
temporal intervals carrying data using a rule syntax designed to describe context.

This paper describes the open-source implementation of nfer. Section 2 con-
tains a programming guide for the nfer language, including a running example.
Section 3 describes the nfer architecture. Section 4 compares nfer to TeSSLa,
a popular stream processing tool. The paper concludes in Section 5.

2 Writing nfer Rules

Nfer’s external domain-specific language (DSL) is a declarative, rule-based logic
for inferring a hierarchy of intervals from an event stream. Rules specify how



new intervals are created from old ones as well as from events. This section uses
a running example to illustrate how nfer rules are formulated.

Inputs and outputs in nfer are temporal intervals of the type I × N× N×M,
where I is the finite set of identifiers (or names), N is the natural numbers
representing begin and end timestamps, andM is the type of maps from strings to
literals. Inputs supplied as events (only one timestamp) are represented interally
as atomic intervals where the begin and end times are equal. Intervals can have
temporal and data relationships, and those relationships define new intervals.

Below is a sequence of six events representing two systems powering on,
performing a test, and powering off. In the table on the left, each event is shown
as a row in the table with its identifier (name), begin, and end timestamps, as
well as two data items: the id of the system and if the test succeeded. On the
right of the figure, the same trace is shown on a timeline, with system id:1 above
the line and system id:2 below the line. The TEST event with success:false is
distinguished by the small shaded flag, where the successful one has a white flag.

Name Begin End id success
ON 10 10 1
TEST 20 20 1 true
ON 30 30 2
TEST 40 40 2 false
OFF 50 50 1
OFF 60 60 2

ON

ON

OFF

OFF

TEST

TEST

id:2

id:1

We want to capture periods where system runs had test failures. We also
know that when two tests occur during a run, one may report a benign failure
that should be ignored. We want to flag test failures where no other successful
test occurred during the failed test’s run. We begin with a simple, flawed rule.

OPERATING :– ON before OFF

This rule says that when an ON interval is seen before an OFF interval, create
an interval named OPERATING with a begin time equal to the begin time of
ON and an end time equal to the end time of OFF. The words OPERATING,
ON, and OFF and all arbitrary and could be the names of any intervals, while
the word before is a keyword that specifies a temporal relationship.

Unfortunately, this rule does not produce what we intended because nfer, by
default, only creates minimal intervals. A minimal interval is one where no inter-
val with the same name occurs during that interval. Only the interval [30, 50] will
be reported by this rule, while three intervals will be omitted: [10, 50], [10, 60],
and [30, 60]. Minimality checking can be disabled to obtain all four intervals.

To generate the two intervals we intend, however, we need to apply a man-
ual constraint. The where keyword specifies a manual constraint that must be
satisfied in addition to those of the temporal relation. The constraint is an ex-
pression that must evaluate to a Boolean value and may refer to the timestamps
and data of the intervals specified in the temporal relation part of the rule. Data
and timestamps are specified by separating the interval name to reference and

2



its datum name with a period. This rule will generate the desired intervals by
specifying that the id of the ON and OFF intervals must be equal.

RUNNING :– ON before OFF where ON.id = OFF.id map { id –> ON.id }

Note that the rule also adds the id of the system to the generated RUNNING
intervals. New intervals have empty data maps by default, but data may be
specified using the map keyword. Map expects a list of keys and associated
expressions listed inside curly braces. Map expressions may return any type.

Name Begin End id
RUNNING 10 50 1
RUNNING 30 60 2

id:2

id:1

Note that the temporal operator (e.g., before) typically defines the times-
tamps of generated intervals. The begin and end keywords specify expressions
that manually override the begin and end timestamps of intervals created by the
rule. This allows a rule to specify precisely the interval of interest, for example
specifying a period 30 seconds after an event occurs.

Next, we want to identify the system executions where the test succeeded or
failed. We can do that with the following rules.
TESTING :– t:TEST during r:RUNNING where t.id = r.id map {s –> t.success}
FAILURE :– TESTING where !TESTING.s

The first rule produces a TESTING interval when a TEST occurs during a
RUNNING. The rule uses a different temporal operator (during, not before).
It also uses labels, prepended to interval names with colons, to provide shorter
handles to reference events in expressions. Labels are required when the temporal
operator refers to two intervals with the same name.

The second rule produces a FAILURE interval when a TESTING interval
has its s datum set to false. We mapped the s datum of TESTING to the
success datum of TEST in the previous rule. The FAILURE rule has no temporal
operator and will match all TESTING intervals.

To complete the specification, we need a rule that identifies when a FAILURE
occurs without another TEST succeeding during the same period. Nfer supports
testing for the absence of intervals using the unless keyword.

HAZARD :– FAILURE unless contain TEST where TEST.success

This rule matches a FAILURE interval when no TEST succeeded in the same
period. In our example, the successful test occurred before the FAILURE interval
began, so a HAZARD is produced.

Name Begin End id s
RUNNING 10 50 1
TESTING 10 50 true
RUNNING 30 60 2
TESTING 30 60 false
FAILURE 30 60
HAZARD 30 60

id:2

id:1

FAILURE

HAZARD

3



Nfer also supports mining rules from historical traces [11]. These can be
useful as either the basis of a new specification or to check the accuracy of human-
written rules. Nfer’s mining algorithm works best when traces are generated
by highly periodic systems, such as an embedded system running a real-time
scheduler. The mining algorithm generates only before relations from events
and does not yet support learning a hierarchy of rules.

To mine rules from the example in this section, we must extract the events
from only one of the systems. Passing such a trace to the nfer’s mining algorithm
yields the following learned rules that describe before relations that hold between
the three input event names.

learned_0 :– ON before TEST
learned_1 :– ON before OFF
learned_2 :– TEST before OFF

3 Nfer’s Architecture

Nfer is designed for low-latency operation with minimal memory use. Every
interface to nfer uses the same core components, written in C, with minimal
external dependencies. Each interface then combines the nfer core with capa-
bilities specific to its intended use-cases.

The nfer architecture is shown in Figure 1. In the figure, each interface is
shown as a separate box, with its sub-components shown as internal labeled
boxes. Every interface shares the nfer core, made up of the optimized data-
structures and algorithms for executing the nfer monitoring algorithm.

nfer Core
nfer

Learn

DSL Event
Parser Compiler

Shell Interface
Compiled Monitor

nfer Core Event
Parser

Target OS API

Python Interface

nfer Core
nfer

Learn

Python C Wrapper

DSL
Rule API

Instrumentation

GUI

nfer Core
nfer

Learn

R C Wrapper

DSL Data Frame
Parser

R Interface

nfer Core

String Interning

Dynamic Typing
Stack

Interval Pool Expression Eval

nfer Monitoring Algorithm

Map

Fig. 1: nfer architecture, with labeled components for each interface

The nfer core consists of several custom data-structures designed to work
together for efficiency. In nfer, all strings are interned and subsequently refer-
enced by a zero-based integer identifier. This permits the map implementation
to store values in an array indexed by string ids, making map lookups a simple

4



memory offset calculation. Interning means string comparisons become integer
comparisons and memory use for strings is reduced. Expression evaluation for
nfer’s DSL is performed using a reverse-polish algorithm and a custom stack
implementation. The nfer core excludes all recursion to facilitate embedded sys-
tem operation including in expression evaluation, the interval pool’s merge-sort
implementation, and the nfer monitoring algorithm [14].

Nfer’s language bindings in R and Python are implemented as native lan-
guage wrappers around the compiled nfer core. The R library is designed for
data processing and integrates closely with R’s native data structures. In R,
nfer rules may be loaded from file or mined and then applied to a data frame
of events to produce a data frame of intervals. The Python module (available
via PyPi as NferModule) includes instrumentation code for Python programs, a
native Python rule DSL, and a Graphical User Interface (GUI) for visualizing
intervals at runtime. By using the compiled nfer core for interval processing,
both tools are much faster than if the language was implemented natively.

An nfer specification may be compiled to a C program using the shell in-
terface. Compiled monitors include the nfer core but use only static memory
allocation, with the size of components set via compile-time configuration. Static
memory allocation reduces the time needed to handle complex specifications but
results in higher memory use, since sufficient space must be configured for any
expected workloads. Nfer can suggest memory settings given a specification and
trace. Compiled monitors are designed for embedded use and have been inte-
grated with Linux and ERIKA Enterprise.

4 Comparison with TeSSLa

TeSSLa is a stream-processing language and tool designed for efficiently checking
logical properties and computing temporal metrics from a trace [5]. Like nfer,
TeSSLa can compute rich abstractions of a trace online using a formal language
specification. Embedded TeSSLa [6], which runs on reconfigurable hardware,
cannot use the dynamic data structures necessary to emulate nfer.

One important difference between nfer and TeSSLa is the simplicity of a
specification to produce temporal intervals. As a general stream-programming
framework, TeSSLa is capable of producing intervals but doing so requires more
complex rules. For example, to implement the four rules from Section 2 in TeSSLa
requires a specification of at least 34 lines.

We conducted an experiment using the example rules from Section 2. The
specification is simple, but represents a typical use for nfer and is complex
enough to demonstrate nfer’s speed. The TeSSLa specification we used and
related documentation is available in the doc/tessla directory of nfer’s source
code repository [1]. We ran two configurations of nfer, one interpreting the
specification through the shell interface and one using a compiled monitor. We
compared these with a compiled TeSSLa 1.2.2 monitor running on Oracle JRE
11.0.12. We generated system logs with varying numbers of operations where

5



each operation resulted in three events. We ran each tool on each log ten times,
allocating one core of an AMD EPYC 7642 running at 1.5 GHz.

0

500

1000

1500

2000

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Number of operations, each with 3 events

E
xe

c
u

ti
o

n
 t

im
e

 (
s
) Tool

Interpreted nfer
Compiled nfer
Compiled TeSSLa

Fig. 2: Execution time used in the experiment

Figure 2 shows the result of the comparison, where lower execution times
are better. In the figure, each mean execution time is shown as a point and
the standard deviation is omitted as the error bars are too small to be visible.
Although the interpreted version of nfer takes around twice the time of the
compiled TeSSLa monitor, the compiled nfer monitor is much faster. We do
not report on memory use since TeSSLa uses the Java Virtual Machine (JVM),
making memory utilization difficult to separate from memory allocation.

There are other Runtime Verification (RV) tools that may be interesting to
compare to nfer. In [10], we compared the latency of an nfer integration into
a Python framework with the CEP system, Siddhi [17] and found nfer to be
over 35 times faster. Some stream RV tools, such as RTLola [7], do not support
dynamic data structures and, as such, cannot emulate the full nfer language.

5 Conclusion

The open-source implementation of the nfer logic described in this paper is dis-
tributed via the GPLv3 license. The tool is easy to install and use in the Unix
command-line, R, and Python. It provides efficient online monitoring of event
streams and offline analysis of timed data. Nfer may be used on embedded sys-
tems with no dynamic memory, and it can be used to visualize Python program
execution in real-time.

The nfer project continues to evolve. Future work includes support for new
data formats, MISRA-C compliance for compiled monitors, multi-threading sup-
port, and performance improvements. In-progress work will characterize the com-
plexity of different nfer language subsets. Check http://nfer.io for updates.

6



References

1. Nfer web site, http://nfer.io/, accessed: 2021-10-11
2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of

the ACM 26(11), 832–843 (1983)
3. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for trace analysis. In:

Formal Methods (FM’11). LNCS, vol. 6664, pp. 57–72. Springer (2011)
4. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous

query system for internet databases. In: International Conference on Management
of Data (ACM SIGMOD’00). pp. 379–390. ACM (2000)

5. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: Temporal stream-based specification language. In: Formal Methods: Foun-
dations and Applications. LNCS, vol. 11254, pp. 144–162. Springer (2018)

6. Convent, L., Hungerecker, S., Scheffel, T., Schmitz, M., Thoma, D., Weiss, A.:
Hardware-based runtime verification with embedded tracing units and stream pro-
cessing. In: Runtime Verification (RV’18). LNCS, vol. 11237, pp. 43–63. Springer
(2018)

7. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring (2019)

8. van Genuchten, M., Hatton, L.: Compound annual growth rate for software. IEEE
Software 29(4), 19–21 (2012)

9. Havelund, K.: Rule-based runtime verification revisited. International Journal on
Software Tools for Technology Transfer 17(2), 143–170 (4 2015)

10. Kauffman, S., Dunne, M., Gracioli, G., Khan, W., Benann, N., Fischmeister, S.:
Palisade: A framework for anomaly detection in embedded systems. Journal of
Systems Architecture 113, 101876 (2021)

11. Kauffman, S., Fischmeister, S.: Mining temporal intervals from real-time system
traces. In: International Workshop on Software Mining (SoftwareMining’17). pp.
1–8. IEEE (2017)

12. Kauffman, S., Fischmeister, S.: Event stream abstraction using nfer: Demo ab-
stract. In: International Conference on Cyber-Physical Systems (ICCPS’19). pp.
332–333. ACM Press (2019)

13. Kauffman, S., Havelund, K., Joshi, R.: nfer–a notation and system for inferring
event stream abstractions. In: International Conference on Runtime Verification
(RV’16). LNCS, vol. 10012, pp. 235–250. Springer (2016)

14. Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring event stream
abstractions. Formal Methods in System Design 53, 54–82 (2018)

15. Kauffman, S., Joshi, R., Havelund, K.: Towards a logic for inferring properties of
event streams. In: International Symposium on Leveraging Applications of Formal
Methods (ISoLA’16). LNCS, vol. 9953, pp. 394–399. Springer (2016)

16. Luckham, D.: The power of events: An introduction to complex event processing in
distributed enterprise systems. In: Rule Representation, Interchange and Reasoning
on the Web. LNCS, vol. 5321. Springer (2008)

17. Suhothayan, S., Gajasinghe, K., Loku Narangoda, I., Chaturanga, S., Perera, S.,
Nanayakkara, V.: Siddhi: A second look at complex event processing architectures.
In: Workshop on Gateway Computing Environments (GCE’11). pp. 43–50. ACM
(2011)

7


