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Abstract. In Runtime Verification (RV), monitoring a system means
checking an execution trace of a program for satisfactions and viola-
tions of properties. The question of which properties can be effectively
monitored over ideal channels has mostly been answered by prior work.
However, program monitoring is often deployed for remote systems where
communications may be unreliable. In this work, we address the ques-
tion of what properties are monitorable over an unreliable communica-
tion channel. We describe the different types of mutations that may be
introduced to an execution trace and examine their effects on program
monitoring. We propose a fixed-parameter tractable algorithm for deter-
mining the immunity of a finite automaton to a trace mutation and show
how it can be used to classify ω-regular properties as monitorable over
channels with that mutation.

1 Introduction

In Runtime Verification (RV) the correctness of a program execution is deter-
mined by another program, called a monitor. In many cases, monitors run re-
motely from the systems they monitor, either due to resource constraints or for
dependability. For example, ground stations monitor a spacecraft, while an au-
tomotive computer may monitor emissions control equipment. In both cases, the
program being monitored must transmit data to a remote monitor.

Communication between the program and monitor may not always be reli-
able, however, leading to incorrect or incomplete results. For example, data from
the Mars Science Laboratory (MSL) rover is received out-of-order, and some low
priority messages may arrive days after being sent. Even dedicated debugging
channels like ARM Embedded Trace Macrocell (ETM) have finite bandwidth
and may lose data during an event burst [1]. Some works in the field of RV have
begun to address the challenges of imperfect communication, but the problem
has been largely ignored in the study of monitorability.

In this work, we propose a definition for a property to be considered mon-
itorable over an unreliable communication channel. To reach our definition, we
must determine what constitutes a monitorable property and whether moni-
torability is affected by a mutation of the property’s input. We first examine the
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concept of uncertainty in monitoring and four common notions of monitorability
in Sections 3 and 4. We then define possible trace mutations due to unreliable
channels and describe what makes a property immune to a trace mutation in
Sections 5 and 6. The combination of immunity to a trace mutation and mon-
itorability (under an existing definition) is what defines the monitorability of a
property under that mutation. To reach a decision procedure for the immunity
of an ω-regular property, we map the definition of immunity to a property of de-
rived monitor automata in Section 7. We finally present a decision procedure for
the immunity of an automaton to a mutation and prove it correct in Section 8.

2 Notation

We use N to denote the set of all natural numbers and ∞ to denote infinity. We
write ⊥ to denote false and > to denote true. A finite sequence σ of n values,
is written σ = 〈v1, · · · , vn〉 where both vi and σ(i) mean the i’th item in the
sequence. A value x is in a sequence σ, denoted by x ∈ σ, iff ∃ i ∈ N such
that σ(i) = x. The length of a sequence σ is written |σ| ∈ N ∪ {∞}. The suffix
of a sequence σ beginning at the i’th item in the sequence is written σi. The
concatenation of two sequences σ, τ is written σ · τ where σ is finite and τ is
either finite or infinite.

We denote the cross product of A and B as A × B and the set of total
functions from A to B as A → B. Given a set S, S∗ denotes the set of finite
sequences over S where each sequence element is in S, Sω denotes the set of
infinite sequences of such elements, and S∞ = S∗ ∪ Sω. Given a set S, we write
2S to mean the set of all subsets of S. The cardinality of a set S is written |S|.
A map is a partial function M : K 7→ V where K is a finite domain of keys
mapped to the set V of values. We write M(k)← v to denote M updated with
k mapped to v. AP is a finite, non-empty set of atomic propositions. An alphabet
is denoted Σ = 2AP, and an element of the alphabet is a symbol s ∈ Σ. A trace,
word, or string is a sequence of symbols.

In this work, we use Finite Automata (FAs) to represent both regular and
ω-regular languages. We use Non-deterministic Büchi Automata (NBAs) to rep-
resent ω-regular languages, which accept infinite strings, and Non-deterministic
Finite Automata (NFAs) to represent regular languages, which accept finite
strings. Both an NBA and an NFA are written A = (Q,Σ, q0, δ, F ), where Q is
the set of states, Σ is the alphabet, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q is
the transition function, and F ⊆ Q is the set of accepting states. The two types
of FAs differ in their accepting conditions. An NFA is a Deterministic Finite
Automaton (DFA) iff ∀q ∈ Q, ∀α ∈ Σ, |δ(q, α)| = 1.

A path (or run) through an FA A from a state q ∈ Q over a word σ ∈ Σ∞
is a sequence of states π = 〈q1, q2, · · · 〉 such that q1 = q and qi+1 ∈ δ(qi, σi). We
write A(q, σ) to denote the set of all runs on A starting at state q with the word
σ. The set of all reachable states in an FA A from a starting state q0 is denoted
Reach(A, q0) = {q ∈ π : π ∈ A(q0, σ), σ ∈ Σ∞}. Given a DFA (Q,Σ, q0, δ, F ), a



state q ∈ Q, and a finite string σ ∈ Σ∗ : |σ| = n, δ∗ : Q × Σ∗ → Q denotes the
terminal (nth) state of the run over σ beginning in q.

A finite run on an NFA π = 〈q1, q2, · · · , qn〉 is considered accepting if qn ∈ F .
For an infinite run on an NBA ρ, we use Inf(ρ) ⊆ Q to denote the set of states
that are visited infinitely often, and the run is considered accepting when Inf(ρ)∩
F 6= ∅. L(A) denotes the language accepted by an FA A. The complement or
negation of an FA A = (Q,Σ, q0, δ, F ) is written A where L(A) = Σ∗ \L(A) for
NFAs and L(A) = Σω \ L(A) for NBAs.

We use Linear Temporal Logic (LTL) throughout the paper to illustrate
examples of properties because it is a common formalism in the RV area. The
syntax of these formulae is defined by the following inductive grammar where p
is an atomic proposition, U is the Until operator, and X is the Next operator.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

The symbols ¬ and ∨ are defined as expected and the following inductive
semantics are used for X and U , where σ ∈ Σω.

– σ |= Xϕ iff σ2 |= ϕ
– σ |= ϕ Uφ iff ∃k ≥ 1 : σk |= φ ∧ ∀j : 1 ≤ j < k, σj |= ϕ

We also define the standard notation: true = p ∨ ¬p for any proposition p,
false = ¬true, ϕ∧ φ = ¬(¬ϕ∨¬φ), ϕ→ φ = ¬ϕ∨ φ, Fϕ = true Uϕ (eventually
ϕ), Gϕ = ¬F¬ϕ (globally ϕ), and Xϕ = Xϕ ∨ ¬Xtrue (weak-next ϕ, true at
the end of a finite trace).

3 Uncertainty

Program properties are typically specified as languages of infinite length strings,
for example by writing LTL formulae. However, in RV, a finite prefix of an
execution trace must be checked. We say a finite string determines inclusion in
(or exclusion from) a language of infinite words only if all infinite extensions of
the prefix are in (or out of) the language. If some infinite extensions are in the
language and some are out, then the finite prefix does not determine inclusion
and the result is uncertainty. The problem appears with an LTL property such as
Fa, which is satisfied if an a appears in the string. However, if no a has yet been
observed, and the program is still executing, it is unknown if the specification
will be satisfied in the future.

To express notions of uncertainty in monitoring, extensions to the Boolean
truth domain B2 = {>,⊥} have been proposed. B3 adds a third verdict of ?
to the traditional Boolean notion of true or false to represent the idea that the
specification is neither satisfied nor violated by the current finite prefix [5]. B4
replaces ? with presumably true (>p) and presumably false (⊥p) to provide more
information on what has already been seen [6].

The verdicts >p and ⊥p differentiate between prefixes that would satisfy
or violate the property interpreted with finite trace semantics. The intuition is



that ⊥p indicates that something is required to happen in the future, while >p
means there is no such outstanding event. For example, if the formula a → Fb
is interpreted as four-value LTL (LTL4) (also called Runtime Verification LTL
(RV-LTL) [6], which uses B4), the verdict on a trace 〈b〉 is >p because a has not
occurred, and therefore no b is required, while the verdict on 〈a〉 is ⊥p because
there is an a but as yet no b. If the same property is interpreted as three-value
LTL (LTL3) (which uses B3) the verdicts on both traces would be ?.

The above intuitions are formalized in Definition 1, which is based on notation
from [13]. Here, ϕ is a language that includes both finite and infinite traces.
Definition 1. (Evaluation Functions) Given a property ϕ ⊆ Σ∞ (here under-
stood as the language it accepts) for each of the truth domains B ∈ {B3,B4}, we
define evaluation functions of the form [[·]]B(·) : 2Σ∞ ×Σ∗ → B as the following.
For B3 = {⊥,?,>},

[[ϕ]]B3(σ) =


⊥ if σ · µ /∈ ϕ ∀µ ∈ Σω

> if σ · µ ∈ ϕ ∀µ ∈ Σω

? otherwise

For B4 = {⊥,⊥p,>p,>},

[[ϕ]]B4(σ) =


[[ϕ]]B3(σ) if [[ϕ]]B3(σ) 6= ?
⊥p if [[ϕ]]B3(σ) = ? and σ /∈ ϕ
>p if [[ϕ]]B3(σ) = ? and σ ∈ ϕ

Introducing the idea of uncertainty in monitoring causes the possibility that
some properties might never reach a definite, true or false verdict. A monitor that
will only ever return a ? result does not have much utility. The monitorability
of a property captures on this notion of the reachability of definite verdicts.

4 Monitorability

In this section, we examine the four most common definitions of monitorability.
To define monitorability for properties over unreliable channels, we must first
define monitorability for properties over ideal channels. Rather than choose one
definition, we introduce four established definitions and allow the reader to select
that of their preference.

4.1 Classical σ-Monitorability

Pnueli and Zaks introduced the first formal definition of monitorability in their
work on Property Specification Language (PSL) model checking in 2006 [24].
They define what languages are monitorable given a trace prefix σ.

Definition 2. (Classical σ-Monitorability) Given an alphabet Σ, and a fi-
nite sequence σ ∈ Σ∗ a language ϕ ⊆ Σ∞ is σ-monitorable iff
∃η ∈ Σ∗ : σ · η · s |= ϕ ∀s ∈ Σ∞ ∨ σ · η · s 6|= ϕ ∀s ∈ Σ∞.



That is, there exists another finite sequence η such that σ ·η determines inclusion
in or exclusion from ϕ.

For example, GFp is non-monitorable for any finite prefix, because the trace
needed to determine the verdict must be infinite. If a reactive system is expected
to run forever, then it is useless to continue monitoring after observing σ such
that ϕ is not monitorable.

4.2 Classical Monitorability
Bauer, Leuker, and Schallhart restated this definition of monitorability and
proved that safety and guarantee (co-safety) properties represent a proper subset
of the class of monitorable properties [7]. It was already known that the class
of monitorable properties was not limited to safety and guarantee properties
from the work of d’Amorim and Roşu on monitoring ω-regular languages [10],
however that work did not formally define monitorability.

The definition of monitorability given by Bauer et al. is identical to Defi-
nition 2 except that it considers all possible trace prefixes instead of a specific
prefix [12, 13] and it excludes languages with finite words. The restriction to
infinite words is due to their interest in defining monitorable LTL3 properties,
which only considers infinite traces.

They use Kupferman and Vardi’s definitions of good and bad prefixes of an
infinite trace [17] to define what they call an ugly prefix. That is, given an
alphabet Σ and a language of infinite strings ϕ ⊆ Σω,
– a finite word b ∈ Σ∗ is a bad prefix for ϕ iff ∀s ∈ Σω, b · s /∈ ϕ, and
– a finite word g ∈ Σ∗ is a good prefix for ϕ iff ∀s ∈ Σω, g · s ∈ ϕ.

Bauer et al. use good and bad prefixes to define ugly prefixes and then use ugly
prefixes to define Classical Monitorability.
Definition 3. (Ugly Prefix) Given an alphabet Σ and a language of infinite
strings ϕ ⊆ Σω, a finite word u ∈ Σ∗ is an ugly prefix for ϕ iff @s ∈ Σ∗ : u · s
is either a good or bad prefix.
Definition 4. (Classical Monitorability) Given a language of infinite strings
ϕ ⊆ Σω, ϕ is classically monitorable iff @u ∈ Σ∗ : u is an ugly prefix for ϕ.

4.3 Weak Monitorability
Recently, both Chen et al. and Peled and Havelund proposed a weaker defini-
tion of monitorability that includes more properties than either the Classical or
Alternative definitions [9, 22]. They observed that there are properties that are
classically non-monitorable, but that are still useful to monitor. For example, the
property a∧GFa is non-monitorable under Definition 4 because any trace that
begins with a must then satisfy or violate GFa, which is not possible. However,
a ∧ GFa is violated by traces that do not begin with a, so it may have some
utility to monitor.
Definition 5. (Weak Monitorability) Given a property ϕ ⊆ Σ∞, ϕ is weakly
monitorable iff ∃p ∈ Σ∗ : p is not an ugly prefix for ϕ.



4.4 Alternative Monitorability

Falcone et al. observed that the class of monitorable properties should depend on
the truth domain of the monitored formula. However, they noticed that changing
from B3 to B4 does not influence the set of monitorable properties under classical
monitorability [12, 13]. To resolve this perceived shortcoming, the authors of [12,
13] introduce an alternative definition of monitorability. They introduce the no-
tion of an r-property (runtime property) which separates the property’s language
of finite and infinite traces into disjoint sets. We do not require this distinction
and treat the language of a property as a single set containing both finite and
infinite traces. Falcone et al. then define an alternative notion of monitorability
for a property using a variant of Definition 1.

Definition 6. (Alternative Monitorability) Given a truth domain B and an
evaluation function for B [[·]]B(·) : 2Σ∞ ×Σ∗ → B, a property ϕ ⊆ Σ∞ is alter-
natively monitorable iff ∀σg ∈ ϕ ∩Σ∗, ∀σb /∈ ϕ ∩Σ∗ [[ϕ]]B(σg) 6= [[ϕ]]B(σb)

Definition 6 says that, given a truth domain, a language with both finite and
infinite words is monitorable if evaluating the finite strings in the language always
yield different verdicts from evaluating the finite strings out of the language.

5 Unreliable Channels

For a property to be monitorable over an unreliable channel it must be mon-
itorable over ideal channels, and it must reach the correct verdict despite the
unreliable channel. To illustrate this idea, we introduce an example.

5.1 An Example with Unreliable Channels

Consider the LTL property Fa over the alphabet Σ = {a, b}. That is, all traces
that contain at least one a satisfy ϕ. We assume that the trace is monitored
remotely, and, for this example, we will adopt a B3 truth domain. With LTL3
semantics, the verdict on finite prefixes without an a, is ?, while the verdict
when an a is included is >. Figure 1a shows the NBA for such a property.

q1 q2
a

b a, b

(a) NBA for Fa

q1

q2 q3
a

c

b
b

c
a a, b, c

(b) NBA for (G(a→ Fb)) ∨ Fc

Fig. 1



Monitorability under reordering Suppose that the channel over which the
trace is transmitted may reorder events. That is, events are guaranteed to be
delivered, but not necessarily in the same order in which they were sent.

We argue that Fa should be considered monitorable over a channel that
reorders the trace. First, the property is monitorable over an ideal channel (see
Section 4). Second, given any trace prefix, reordering the prefix would not change
the verdict of a monitor. Any a in the trace will cause a transition to state q2,
regardless of its position.

Monitorability under loss Now suppose that, instead of reordering, the chan-
nel over which the trace is transmitted may lose events. That is, the order of
events is guaranteed to be maintained, but some events may be missing from
the trace observed by the monitor.

We argue that Fa should not be considered monitorable over a channel that
loses events, even though the property is deemed to be monitorable over an ideal
channel. It is possible for the verdict from the monitor to be different from what
it would be given the original trace. For example, assume a trace 〈a, b〉. For this
trace, the verdict from an LTL3 monitor would be >. However, if the a is lost,
the verdict would be ?.

5.2 Trace Mutations
To model unreliable channels, we introduce trace mutations. A mutation repre-
sents the possible modifications to traces from communication over unreliable
channels. These mutations are defined as relations between unmodified original
traces and their mutated counterparts. Trace mutations include only finite traces
because only finite prefixes may be mutated in practice.

There are four trace mutationsMk ⊆ Σ∗ ×Σ∗ whereM denotes any of the
relations in Definitions 7, 8, 9, and 10 or a union of any number of them, and k
denotes the number of inductive steps.

Definition 7. (Loss Mutation)
Loss = {(σ, σ′) : σ = σ′ ∨ ∃α, β ∈ Σ∗,∃x ∈ Σ : σ = α · 〈x〉 · β ∧ σ′ = α · β}

Definition 8. (Corruption Mutation)
Corruption = {(σ, σ′) : ∃α, β ∈ Σ∗,∃x, y ∈ Σ : σ = α · 〈x〉 · β ∧ σ′ = α · 〈y〉 · β}

Definition 9. (Stutter Mutation)
Stutter = {(σ, σ′) : σ = σ′∨∃α, β ∈ Σ∗,∃x ∈ Σ : σ = α ·〈x〉·β∧σ′ = α ·〈x, x〉·β}

Definition 10. (Out-of-Order Mutation)
OutOfOrder = {(σ, σ′) : ∃α, β ∈ Σ∗,∃x, y ∈ Σ : σ = α·〈x, y〉·β∧σ′ = α·〈y, x〉·β}

Definition 11. (Inductive k-Mutations) Given any mutation or union of mu-
tationsMk, we defineMk+1 inductively as the following.

M1 ∈ {
⋃
m : m ∈ 2{Loss,Corruption,Stutter,OutOfOrder},m 6= ∅}

Mk+1 = {(σ1, σ3) : ∃(σ1, σ2) ∈Mk,∃(σ2, σ3) ∈M1} ∪Mk



These mutations are based on Lozes and Villard’s interference model [21].
Other works on the verification of unreliable channels, such as [8], have chosen
to include insertion errors instead of Corruption and OutOfOrder. We prefer to
define Corruption and OutOfOrder because the mutations more closely reflect
our real-world experiences. For example, packets sent using the User Datagram
Protocol (UDP) may be corrupted or arrive out-of-order, but packets must be
sent before these mutations occur.

We say a mutation M is prefix-assured when ∀(σ, σ′) ∈M such that |σ| > 1,
∃(σp, σ′p) ∈ M , where σp is a prefix of σ and σ′p is a prefix of σ′. All mutations
M1 are prefix-assured. Combining mutations is possible under Definition 11,
and it is possible to form any combination of strings by doing so. This capability
is important to ensure the mutation model is complete.

Theorem 1. (Completeness of Mutations) Given any set of non-empty traces
S ⊆ Σ∗ \ {ε}, (Loss ∪ Corruption ∪ Stutter)∞ = S ×Σ∗.

Proof: First, Definition 8 allows an arbitrary symbol in a string to be changed
to any other symbol. Thus, ∀σ′ ∈ Σ∗, ∃σ : (σ, σ′) ∈ Corruptionn, |σ| = |σ′|
where n ≥ |σ|. A string can also be lengthened or shortened arbitrar-
ily, so long as it is non-empty. Definition 9 allows lengthening, because
Stutter(σ, σ′) =⇒ |σ| < |σ′|, while Definition 7 allows shortening, because
Loss(σ, σ′) =⇒ |σ| > |σ′|. ut

These mutations are general and it may be useful for practitioners to define
their own, more constrained mutations based on domain knowledge. For example,
even Definition 10 is unnecessary for the completeness of the mutation model,
but the combination of Definitions 7, 8, and 9 cannot completely specify the
OutOfOrder relation. That is, OutOfOrdern ⊂ Corruption2n ∀n ∈ N.

6 Immunity to Trace Mutations

The two requirements for a property to be monitorable over an unreliable channel
are that the property is monitorable over an ideal channel and that the property
is immune to the effects of the unreliable channel. A monitor must be able to
reach a meaningful, actionable verdict for a trace prefix, and the verdict must
also be correct. If a monitored property is immune to a mutation then we can
trust the monitor’s verdict whether or not the observed trace is mutated.

Definition 12 characterizes properties where the given trace mutation will
have no effect on the evaluation verdict. For example, the LTL property Fa
from Figure 1a is immune to OutOfOrder∞ with truth domain B3 or B4 because
reordering the input trace cannot change the verdict.

Definition 12. (Full Immunity to Unreliable Channels) Given a trace alphabet
Σ, a property ϕ ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ × Σ∗, a truth domain B,
and an evaluation function [[·]]B(·) : 2Σ∞ × Σ∗ → B, ϕ is immune to Mk iff
∀(σ, σ′) ∈Mk, [[ϕ]]B(σ) = [[ϕ]]B(σ′).



Definition 12 specifies a k-Mutation from Definition 11, but a property that
is immune to a mutation for some k is immune to that mutation for any k.
This significant result forms the basis for checking for mutation immunity in
Section 8. The intuition is that, since we assume any combination of symbols in
the alphabet is a possible ideal trace, and a mutation could occur at any time,
one mutation is enough to violate immunity for any vulnerable property.

Theorem 2. (Single Mutation Immunity Equivalence) Given a trace alphabet
Σ, a property ϕ ⊆ Σ∞, a trace mutation M ⊆ Σ∗ × Σ∗, and a number of
applications of that mutation k, ϕ is immune toMk iff ϕ is immune toM1.

Proof: Since k-Mutations are defined inductively, Theorem 2 is equivalent
to the statement that ϕ is immune to Mk+1 iff ϕ is immune to Mk. Now
assume by way of contradiction a property ϕbad ⊆ Σ∞ such that ϕbad is im-
mune to some k-Mutation Mk but not to Mk+1. That is, given a truth domain
B, ∃(σ1, σ3) ∈Mk+1 : [[ϕbad]]B(σ1) 6= [[ϕbad]]B(σ3). From Definition 11, either
(σ1, σ3) ∈ Mk, or ∃(σ1, σ2) ∈Mk,∃(σ2, σ3) ∈M1 : [[ϕbad]]B(σ1) 6= [[ϕbad]]B(σ3).
It cannot be true that (σ1, σ3) ∈ Mk since ϕbad is immune to Mk so there
must exist pairs (σ1, σ2) ∈Mk and (σ2, σ3) ∈M1. Since ϕbad is immune toMk,
[[ϕbad]]B(σ1) = [[ϕbad]]B(σ2) so it must be true that [[ϕbad]]B(σ2) 6= [[ϕbad]]B(σ3).
However, it is clear from Definition 11 that Mk ⊆ Mk+1, so M1 ⊆ Mk for any
k, which is a contradiction.

For the reverse case, assume a property ϕsad ⊆ Σ∞ such that ϕsad is not
immune to some k-Mutation Mk but immune to Mk+1. However, as we saw
before, Mk ⊆Mk+1 so ϕsad must not be immune to Mk+1, a contradiction. ut

Immunity under Definition 12 is too strong to be a requirement for moni-
torability over an unreliable channel, however. Take, for example, the property
(G(a → Fb)) ∨ Fc, as shown in Figure 1b. By Definition 12 with truth domain
B4 this property is vulnerable (not immune) to OutOfOrder1 because reordering
symbols may change the verdict from >p to ⊥p and vice versa. However, this
property is monitorable under all definitions in Section 4, so we would like to
weaken the definition of immunity only to consider the parts of a property that
affect its monitorability.

To weaken the definition of immunity we consider only the determinization
of the property to be crucial. Definition 13 characterizes properties for which
satisfaction and violation are unaffected by a mutation. We call this true-false
immunity, and it is equivalent to immunity with truth domain B3. The intuition
is that B3 treats all verdicts outside {>,⊥} as the symbol ? so immunity with
this truth domain does not concern non-true-false verdicts.

Definition 13. (True-False Immunity to Unreliable Channels) Given a trace
alphabet Σ, a property ϕ ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ × Σ∗, and the
evaluation function [[·]]B3(·) : 2Σ∞ ×Σ∗ → B3, ϕ is true-false immune toMk iff
∀(σ, σ′) ∈Mk, [[ϕ]]B3(σ) = [[ϕ]]B3(σ′).

The true-false immunity of a property to a mutation is necessary but not
sufficient to show that the property is monitorable over an unreliable channel.



For example, G(a → Fb) is true-false immune to all mutations because the
verdict will be ? for any prefix, but the property is not monitorable. We can
now define monitorability over unreliable channels in the general case.

Definition 14. (Monitorability over Unreliable Channels) Given a trace alpha-
bet Σ, a property ϕ ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ × Σ∗, and a definition
of monitorability V, ϕ is monitorable over Mk iff ϕ is considered monitorable
by V, and ϕ is true-false immune toMk.

By Rice’s Theorem, monitorability over unreliable channels is undecidable
in the general case, but we now provide a decision procedure for properties ex-
pressible by an NBA. As decision procedures for the monitorability of ω-regular
languages exist, we focus on determining the true-false immunity of a property
to a given mutation.

7 Deciding Immunity for ω-Regular Properties

To determine the immunity of an ω-regular property to a trace mutation, we
must construct automata that capture the notion of uncertainty from B3. Bauer
et al. defined a simple process to build a B3 monitor using two DFAs in their
work on LTL3 [5].

The procedure begins by complementing the language. A language of infinite
words ϕ is represented as an NBA Aϕ = (Q,Σ, q0, δ, Fϕ), for example, LTL
can be converted to an NBA by tableau construction [25]. The NBA is then
complemented to form Aϕ = (Q,Σ, q0, δ, Fϕ). Remark: The upper bound for
NBA complementation is 2O(n logn), so it is cheaper to complement an LTL
property and construct its NBA if starting from temporal logic [18].

To form the monitor, create two NFAs based on the NBAs and then convert
them to DFAs. The two NFAs are defined as A = (Q,Σ, q0, δ, F ) and A =
(Q,Σ, q0, δ, F ) The new accepting states are the states from which an NBA
accepting state is reachable. That is, we make F = {q ∈ Q : Reach(Aϕ, q)∩Fϕ 6=
∅}, and F = {q ∈ Q : Reach(Aϕ, q)∩Fϕ 6= ∅}. The two NFAs are then converted
to DFAs via powerset construction. The verdict for a finite trace σ is then given
as the following:

Definition 15. (B3 Monitor Verdict) Given an alphabet Σ and a language
ϕ ⊆ Σω , derive B3 monitor DFAs A = (Q,Σ, q0, δ, F ) and A = (Q,Σ, q0, δ, F ).
The B3 verdict for a string σ ∈ Σ∗ is the following.

[[ϕ]]B3(σ) =


⊥ if σ /∈ L(A)
> if σ /∈ L(A)
? otherwise

We can now restate Definition 13 using monitor automata. This new defini-
tion will allow us to construct a decision procedure for a property’s immunity
to a mutation.



Theorem 3. (True-False Immunity to Unreliable Channels for ω-Regular
Properties) Given an alphabet Σ and an ω-regular language ϕ ⊆ Σω,
derive B3 monitor DFAs A = (Q,Σ, q0, δ, F ) and A = (Q,Σ, q0, δ, F ).
ϕ is true-false immune to a trace mutation Mk ⊆ Σ∗ ×Σ∗ iff
∀(σ, σ′) ∈Mk, (σ /∈ L(A)⇔ σ′ /∈ L(A)) ∧ (σ /∈ L(A)⇔ σ′ /∈ L(A)).

Proof: By Definition 13 it is only necessary to show that [[ϕ[]B3(σ) = [[ϕ[]B3(σ′)
is equivalent to (σ /∈ L(A)⇔ σ′ /∈ L(A)) ∧ (σ /∈ L(A)⇔ σ′ /∈ L(A)). There are
three cases: ⊥, >, and ?. For ⊥ and > it is obvious from Definition 15 that the
verdicts are derived from exclusion from the languages of A and A. As there are
only three possible verdicts, this also shows the ? case. ut

We say that an automaton is immune to a trace mutation in a similar way
to how a property is immune. To show that a property is true-false immune to a
mutation, we only need to show that its B3 monitor automata are also immune
to the property. Note that, since the implication is both directions, we can use
either language inclusion or exclusion in the definition.

Definition 16. (Finite Automaton Immunity) Given a finite automaton
A = (Q,Σ, q0, δ, F ) and a trace mutationMk ⊆ Σ∗ ×Σ∗, A is immune toMk

iff ∀(σ, σ′) ∈Mk, σ ∈ L(A)⇔ σ′ ∈ L(A).

With this definition we can provide a decision procedure for the monitorabil-
ity of an ω-regular property over an unreliable channel. The procedure will check
the immunity of the B3 monitor automata to the mutations from the channel,
as well as the property’s monitorability. If the DFAs are both immune to the
mutations and the property is monitorable, then the property is monitorable
over the unreliable channel.

8 Decision Procedure for Finite Automaton Immunity

We propose Algorithm 1 for deciding whether a DFA is immune to a trace
mutation. The algorithm is loosely based on Hopcroft and Karp’s near-linear
algorithm for determining the equivalence of finite automata [15].

The parameters to Algorithm 1 are the DFA to check (A) and the mutation
(M) which is a relation given by M1 in Definition 11. The intuition behind
Algorithm 1 is to follow transitions for pairs of unmutated and corresponding
mutated strings in M and verify that they lead to the same acceptance verdicts.
More specifically, Algorithm 1 finds sets of states which must be equivalent for
the DFA to be immune to a given mutation. The final verdict of immune is found
by checking that no equivalence class contains both final and non-final states.
If an equivalence class contains both, then there are some strings for which the
verdict will change due to the given mutation.

If all mutations required only a string of length one, the step at Line 7
could follow transitions for pairs of single symbols. However, mutations like
OutOfOrder require strings of at least two symbols, so we must follow tran-
sitions for short strings. We express this idea of a minimum length for a



Algorithm 1 Determine if a DFA is immune to a given trace mutation.
1: procedure immune( A = (Σ,Q, q0, δ, F ),M )
2: for q ∈ Q do E(q)← {q} . E is a map E : Q 7→ 2Q

3: R←Reach(A, q0) . R is the reachable states
4: T ← { } . T is a set of pairs, used like a worklist
5: for (σ, σ′) ∈M where |σ| = minLength(M) do . M is a mutation relation
6: for q ∈ R do
7: q1 ← δ∗(q, σ); q2 ← δ∗(q, σ′) . Follow mutated strings
8: E(q1)← E(q2)← {q1, q2} . Update E for both states
9: T ← T ∪ {(q1, q2)} . Add the pair to T
10: while T is not empty do
11: let (q1, q2) ∈ T . Get a pair from the worklist
12: T ← T \ {(q1, q2)} . Remove the pair from T
13: for α ∈ Σ do
14: n1 ← δ(q1, α);n2 ← δ(q2, α) . Follow transitions to the next states
15: C ← {E(n1), E(n2)} . C is a set of two sets
16: if |C| > 1 then . If those sets weren’t equal
17: E(n1)← E(n2)←

⋃
C . Merge sets in E

18: T ← T ∪ {(n1, n2)} . The new pair is added to T
19: if Any set in E contains both final and non-final states then return False
20: else return True

mutation in the minLength : 2Σ∗×Σ∗ → N function. For mutations in Sec-
tion 5, minLength(Loss) = minLength(Corruption) = minLength(Stutter) = 1
and minLength(OutOfOrder) = 2. Note that minLength for unions must in-
crease to permit the application of both mutations on a string. For example,
minLength(Loss ∪ Corruption) = 2. This length guarantees that each string has
at least one mutation, which is sufficient to show immunity by Theorem 2.

The algorithm works as follows. We assume a mutation can occur at any
time, so we begin by following transitions for pairs of mutated and unmutated
strings from every reachable state (stored in the set R). On Lines 5-9, for each
pair (σ, σ′) in M and for each reachable state, we compute the states q1 and
q2 reached from σ (respectively σ′). The map E contains equivalence classes,
which we update for q1 and q2 to hold the set containing both states. The pair
of states is also added to the worklist T , which contains equivalent states from
which string suffixes must be explored.

The loop on Lines 10-18 then explores those suffixes. It takes a pair of states
(q1, q2) from the worklist and follows transitions from those states to reach n1 and
n2. If n1 and n2 are already marked as equivalent to other states in E or aren’t
marked as equivalent to each other, those states are added to the worklist, and
their equivalence classes in E are merged. If at the end, there is an equivalence
class with final and non-final states, then A is not immune to M .

Theorem 4. (Immunity Procedure Correctness) Algorithm 1 is sound and com-
plete for any DFA and prefix-assured mutation. That is, given a DFA A =
(Σ,Q, q0, δ, F ), and a mutation, M , Immune(A,M)⇔ A is immune to M .



Proof: By Definition 16, this is equivalent to showing that
Immune(A,M)⇔ (∀(σ, σ′) ∈M, σ ∈ L(A)⇔ σ′ ∈ L(A)).

We will prove the ⇒ direction (soundness) by contradiction. Suppose at the
completion of the algorithm that all sets in E contain only final or non-final
states, but that A is not immune to M . There is at least one pair (σb, σ′b) ∈M
where one leads to a final state, and one does not. If Algorithm 1 had checked
this pair then these states would be in an equivalence class in E. Since the
loop on Line 7 follows transitions for pairs in M of length minLength(M), the
reason (σb, σ′b) was not checked must be because |σb| 6= minLength(M). The
length of σb must be greater than minLength(M) since strings shorter than
minLength(M) cannot be mutated by M . Since M is prefix-assured, there must
be a pair (σ, σ′) : |σ| = minLength(M) that are prefixes of (σb, σ′b). The loop on
Line 10 will check (σ ·s, σ′ ·s), ∀s ∈ Σ∗. Therefore it must be the case that σb =
σ · t, σ′b = σ′ · u : t, u ∈ Σ∗, t 6= u. However, if t 6= u then (σb, σ′b) ∈Mk : k > 1,
so A is immune to M1 but not Mk, but from Theorem 2 this is a contradiction.

We prove the ⇐ direction (completeness) by induction. We will show that if
A is immune toM then no set in E, and no pair in T will contain both final and
non-final states. The base case at initialization is obviously true since every set
in E contains only one state and T is empty. The induction hypothesis is that
at a given step i of the algorithm if A is immune to M then every set in E and
every pair in T contains only final or non-final states.

At step i+ 1, in the loop on Line 7, E and T are updated to contain states
reached by following σ and σ′. Clearly, if A is immune to M then these states
must be both final or non-final since we followed transitions from reachable states
for a pair in M . In the loop on Line 10, n1 and n2 are reached by following the
same symbol in the alphabet from a pair of states in T . If A is immune to M ,
the strings leading to that pair of states must both be in, or both be out of the
language. So, extending both strings by the same symbol in the alphabet creates
two strings that must both be in or out of the language. These states reached
by following these strings are added to T on Line 18.

On Lines 15 and 17, the two sets in E corresponding to n1 and n2 are merged.
Since both sets must contain only final or non-final states, and one-or-both of
n1 and n2 are contained in them, the union of the sets must also contain only
final or non-final states. ut

Theorem 5. (Immunity Procedure Complexity) Algorithm 1 is Fixed-
Parameter Tractable. That is, given a DFA A = (Σ,Q, q0, δ, F ), and a mu-
tation, M , its maximum running time is |Q|O(1)f(k), where f is some function
that depends only on some parameter k.

Proof: The run-time complexity of Algorithm 1 is O(n)O(ml f(M)) where
n = |Q|, m = |Σ|, l = minLength(M), and f is a function on M . First, Lines 4,
7, 8, 9, 11, 12, 14, 15, 16, 17, and 18 execute in constant time, while each of
Lines 2, 3, and 19 run in time bounded by n.

The initialization loop at Line 5 runs once for each pair in the mutation
where the length of σ is bounded by minLength(M). This count is ml times a



factor f(M) determined by the mutation. For example, f(Loss) = l because each
σ is mutated to remove each symbol in the string. Critically, this factor f(M)
must be finite, which it is for the mutationsM1. The loop at Line 6 runs in time
bounded by n, so the body of the loop is reached at most mlf(M)n times.

The loop at Line 10 may run at most mlf(M) +n times. The loop continues
while the worklist T is non-empty. Initially, T has mlf(M) elements. Each time
Line 12 runs, an element is removed from the worklist. For an element to be
added to T , it must contain states corresponding to sets in E which are not
identical. When this occurs, those two corresponding sets are merged, so the
number of unique sets in E is reduced by at least one. Therefore, the maximum
number of times Line 18 can be reached and an element added to T is n. ut

Note that, in practice, minLength(M) is usually small (often only one), so
Algorithm 1 achieves near linear performance in the size of the FA. The size of
the alphabet has an effect but it is still quadratic.

9 Discussion

The mutations from Definitions 7 to 10 are useful abstractions of common prob-
lems in communication. However, in many cases, they are stronger than is needed
as practitioners may have knowledge of the channel that constrains the muta-
tions. For example, in MSL, messages contain sequence numbers which can be
used to narrow the range of missing symbols. An advantage of our method is
that custom mutations can be easily defined and then tested using Algorithm 1.
Custom mutations should avoid behavior that requires long strings to mutate,
however, as this causes exponential slowdown.

Well designed mutations like those in Section 5 can be checked quickly. How-
ever, the method relies on B3 monitor construction to obtain DFAs, and the
procedure to create them from an NBA is in 2EXPSPACE. We argue that this
is an acceptable cost of using the procedure since a monitor must be derived to
check the property in any case. Future work should explore ideas from the study
of monitorability [11, 22] to find a theoretical bound on deciding immunity.

Another avenue for improving on our work is to characterize classes of prop-
erties that are immune to different mutations. The classes of monitorable proper-
ties under different definitions in Section 4 are mostly understood [13, 22]. Find-
ing a similar classification for the immunity of properties to mutations would be
useful. It is already understood that all LTL properties without the next (X)
operator are immune to Stutter [19, 23].

10 Related Work

Unreliable channels have been acknowledged in formal methods research for
some time. One area where the unreliable communication channels are commonly
modeled is where Communicating Finite State Machines (CFSMs) are used to
verify network protocols. Abdulla and Jonsson provided algorithms for deciding
the termination problem for protocols on lossy first-in first-out (FIFO) buffers,



as well as algorithms for some safety and eventuality properties [2]. Cécé et
al. also considered channels with insertion errors and duplication errors [8].

Work has been done to show which properties are verifiable on a trace with
mutations and to express degrees of confidence when they are not. Stoller et
al. used Hidden Markov Models (HMMs) to compute the probability of a prop-
erty being satisfied on a lossy trace [26]. Their definition of lossy included a “gap”
marker indicating where symbols were missing. They used HMMs to predict the
missing states where gaps occurred and aided their estimations with a learned
probability distribution of state transitions. Joshi et al. introduced an algorithm
to determine if a specification could be monitored soundly in the presence of a
trace with transient loss, meaning that eventually it contained successfully trans-
mitted events [16]. They defined monotonicity to identify properties for which
the verdicts could be relied upon once a decision was made.

Garg et al. introduced a first-order logic with restricted quantifiers for audit-
ing incomplete policy logs [14]. The authors used restricted quantifiers to allow
monitoring policies that would, in principle, require iterating over an infinite do-
main. Basin et al. also specified a first-order logic for auditing incomplete policy
logs [4]. Basin et al. also proposed a semantics and monitoring algorithm for
Metric Temporal Logic (MTL) with freeze quantifiers that was sound and com-
plete for unordered traces [3]. Their semantics were based on a three-value logic,
and the monitoring algorithm was evaluated over ordered and unordered traces.
All three of these languages used a three value semantics (t, f,⊥) to model a
lossy trace, where ⊥ represented missing information.

Li et al. examined out-of-order data arrival in Complex Event Processing
(CEP) systems and found that SASE [27] queries processed using the Active
Instance Stack (AIS) data structure would fail in several ways [20]. They pro-
posed modifications to AIS to support out-of-order data and found acceptable
experimental overhead to their technique.

11 Conclusion

The ability to check properties expressible by NBAs for monitorability over unre-
liable channels allows RV to be considered for applications where RV would have
previously been ignored. To arrive at this capability, we first needed to define
monitorability over unreliable channels using both existing notions of monitora-
bility and a new concept of mutation immunity. We proved that immunity to a
single application of a mutation is sufficient to show immunity to any number
of applications of that mutation, and we defined true-false immunity using B3
semantics. We believe unreliable communication is an important topic for RV
and other fields that rely on remote systems, and we hope that this work leads
to further examination of unreliable channels in the RV community.
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