
Static Transformation of Power Consumption for Software Attestation

Sean Kauffman
School of Computer Science

University of Waterloo, Canada
Email: skauffma@uwaterloo.ca

Carlos Moreno
Electrical and Computer Engineering

University of Waterloo, Canada
Email: cmoreno@uwaterloo.ca

Sebastian Fischmeister
Electrical and Computer Engineering

University of Waterloo, Canada
Email: sfischme@uwaterloo.ca

Abstract—Software attestation seeks to verify the authenticity
of a system without the aid of trusted hardware, and has
important applications in the field of security. Such attestation
schemes are of particular interest in the embedded domain, where
simplicity and limited resources constrain more complex security
solutions. At the same time, these properties enable attestation
approaches that rely on predictable side-effects. Most software
attestation schemes aim to verify the integrity of memory using
a combination of cryptographic schemes, internal side-effects
like TLB misses, and known timing constraints. However, little
attention has been paid to leveraging non-traditional side-effects,
in particular, externally observable side-effects such as power
consumption.

In this paper we introduce a method for software attestation
using power consumption as the side-effect. We show how to
circumvent the undecidable nature of program execution for
this purpose and present a static compiler transformation which
implements the technique. Our approach is less intrusive than
traditional software attestation because the system does not
require interruption to compute a cryptographic checksum. It
is particularly well suited to real-time systems where consistent
timing is more important than speed.

I. INTRODUCTION

Security researchers are increasingly exploring software attes-
tation techniques in the embedded domain. Trusted hardware,
such as the Trusted Platform Module [1] or Palladium Next
Generation Security Computing Base [2], are effective but
often too expensive for use in embedded devices. The limited
resources, simple design, and strict requirements of most
embedded systems require a different approach to software
security. Software attestation allows an external verifier to
check that an embedded system, the prover, has not been
compromised, without requiring specialized hardware [3]. This
is accomplished by leveraging the very characteristics of the
embedded system that make it difficult to secure. Because of
their simple nature, embedded devices exhibit side-effects with
low variance. Software attestation uses foreknowledge of these
side-effects to check that the system is operating as expected
and is uncompromised.

Prior efforts at software attestation have focused on using
a variety of side-effects to verify the contents of memory.
Typically, the verifier asks the prover to execute a special
routine with an input for which the side-effect behavior is
known [4], [5]. During that routine, those behaviors are used in
cryptographic functions to generate memory addresses which
are accessed. The results of those accesses and the side-effect
behaviors are used to compute a checksum that is returned
to the verifier, which then confirms that the execution time

bounds were not exceeded. These methods rely on the physical
security of the hardware and the difficulty of precomputing the
routine, and are only able to check static memory regions that
may be known in advance.

Time bounds are used to ensure that no extra code may be
executed, but this requires that the routine interrupt regular
operation, that the routine itself be uninterruptible, and that
the code be repeated enough times for small variations to
be noticeable. Existing frameworks have shown examples of
their verification routines taking up to 1.8 s [5], and 7.93 s [4].
These requirements mean that memory can only be verified at
system start up, or on systems where a several second break
in operation is acceptable.

In this paper, we present a novel software attestation
technique based on the power consumption of a device. By
embedding a known power signature into the software, we
enable this side-effect to be used to verify that the system is
authentic and uncompromised. Unlike prior works, our method
is applicable to real-time embedded systems, as it does not
require interrupting the software to perform computations that
are part of the attestation process. Instead, we use a compiler
assisted transformation to modify the program so that it can be
effectively monitored during operation. As part of this work,
we prove that the algorithm that analyzes and modifies the
program will converge for all input programs and that we can
find the meet over all paths (MOP) solution.

The remainder of the paper is organized as follows. We first
present background and related work in sections II and III.
Section IV states the problem and assumptions we make.
We describe our technique in Sections V and VI and its
implications in Section VII. We conclude in Section VIII.

II. RELATED WORK

Software attestation has received some attention in recent
literature. Most methods focus on utilizing a combination
of cryptographic functions and execution side-effects to pro-
duce checksums which are difficult to replicate. Kennell
and Jamieson proposed a solution which incorporated side-
effect information such as TLB counters into a cryptographic
checksum computation to prove system genuinity [4], while
Seshadri et al. (SWATT) used sequential pseudo-random mem-
ory reads in a cryptographic checksum to prove the con-
tents of memory were unmodified [5]. Both approaches used
challenge-response protocols with time limits on the response
to thwart the high presumed cost of side-effect emulation.

These techniques have been heavily criticized. Multiple

published works have shown the method proposed by Kennell
and Jamieson [4] to be inherently flawed. Shankar, Chew
and Tygar proposed a substitution attack [6] which replaced
code on the target system while maintaining the side-effects
checked by the genuinity test. Seshadri et al. also demonstrated
that such a test will still succeed with 50% probability with
a significant amount of memory modification [5]. In [7],
Castelluccia et al. presented attacks on SWATT using memory
shadowing, and on ICE-based schemes using return oriented
programming (ROP) [8].

Armknecht et al. published a method of evaluating software
attestation techniques [3], but unfortunately little of it is
applicable to this work. They make the assumption that the
attestation technique uses a cryptographic challenge-response
protocol, which our work does not. They also assume that the
technique attempts to verify the contents of memory, which
our work does not. We must, therefore, argue our technique
without a standard method of evaluation.

Recent works have focused on the problem of correlating
power consumption with execution path. Eisenbarth et al. [9]
proposed a disassembler that used power consumption to re-
construct the executed code, while Moreno et al. [10], [11] pro-
posed a technique that determines executed blocks of source
code from power consumption measurements. Clark et al.
proposed a technique that uses power consumption to per-
form malware detection in embedded medical devices [12].
Although effective in the proposed context, their technique is
limited by its reliance on the device operation being simple
and highly repetitive, and by requiring both nominal and off-
nominal labeled training samples.

III. BACKGROUND

In this section, we review background information regarding
power based program tracing and static analysis.

A. Power Consumption

Power consumption in modern microprocessors is a function
of the instructions they execute and the data on which they
operate [13], [9], [10]. A power trace corresponding to the
execution of a program or a fragment of a program is defined
as the function of power consumption over the execution time
interval. In practice, we sample the power consumption at
regular intervals and represent the power trace as a sequence
of N samples that we treat as an N -dimensional vector.

For a given processor with given operating conditions, a
power trace is determined by the sequence of instructions it
executes and the data on which those instructions operate.
The predominant effect comes from the instructions, with
the data introducing small variations over the average power
consumption that a given operation produces [13], [10], [9].
Figure 1 shows an example of two measured power traces for
two different blocks of code.

For a side-effect to be useful for verification, its behavior
must be known in advance. For power consumption, we define
behavior to mean the power trace observable during execution.

We define a probability density function (PDF) of the power

 1e+07

 1.05e+07

 1.1e+07

 1.15e+07

 1.2e+07

 1.25e+07

 1.3e+07

 0 100 200 300 400 500 600 700 800

D
ig

it
iz

e
d
 v

a
lu

e

Time index

Power trace -- Block 1
Power trace -- Block 2

Fig. 1: Example of power traces for two blocks of code

trace for a given program, where the probabilities are taken
over the space of multiple executions with randomly selected
input data. This PDF could be given as mean and variance
vectors, where each coordinate in the vectors corresponds to
a time index at which the sample is taken. In most situations,
we work with an approximation of the PDF by experimentally
measuring power traces for randomly selected input data.

Our proposed method uses some ideas from the field of
statistical pattern recognition [14]. These techniques aim to
maximize the probability over a set of candidate classes, given
an observation. They are used in existing power-based tracing
methods to find the most likely fragment of code that produced
an observed power trace [10], [9], [11]. Our technique deals
with the problem of determining, from power trace observa-
tions, whether the execution follows the expected pattern, and
thus some of the ideas from this field are applicable.

B. Mapping to Intermediate Representation

As we will discuss in Sections IV and V, our technique re-
quires the ability to manipulate the power trace of a given pro-
gram through transformations that preserve the semantics of
the program. We wrote an optimization pass using the LLVM
compiler framework [15] to perform these transformations
statically. Our pass is applied after all other optimizations,
to ensure that the changes are not undone by performance
optimizations that remove or reorder code.

LLVM uses a low-level intermediate representation (IR) for
optimization, which is a pseudo-assembly language that maps
fairly directly to most machine languages. To use LLVM IR,
we need to map it to the known behaviors for the target CPU.
Figure 2 shows an example of such a mapping: four IR instruc-
tions are shown above a power trace of their execution. For ex-
ample, the portion of the power trace marked IR2 corresponds
to the measurement of the power consumption of the processor
while executing %17 = sext i8 %16 to i32. The four
instructions execute sequentially, so their power traces occur
without interruption. The training technique described in [11]
demonstrates a method to map IR instructions to power
traces. In our case, the variance of each index is also useful
for determining an appropriate error threshold (ε), which is
discussed in more detail in Sections V and VI.

C. Control Flow

We need to be able to verify programs where control flow
statements like branches and function calls exist. The specific
order that those control flow statements execute is called the

IR1: %16 = load i8* %b, align 1
IR2: %17 = sext i8 %16 to i32
IR3: %18 = icmp ne i32 %17, 0
IR4: br i1 %18, label %19, label %20

 0 100 200 300 400 500 600 700 800

 P
o

w
e

r

Time index

IR
1

IR
2

IR
3

IR
4

Fig. 2: Mapping sequential IR instructions to power consump-
tion behavior

control flow, and determining it in advance is undecidable in
the general case. We model it using a Control Flow Graph
(CFG), which is a directed graph (V,E) where the set of
vertices V represent sequential sections of code, called basic
blocks, and the set of edges E represent possible control flow.

D. Global Data Flow Analysis Problems
Compile-time program analysis and transformation involves
solving a class of problems called global data flow analysis
problems (gdfaps) to determine information found throughout
the program. We wish to find the meet over all paths (MOP)
solution to a gdfap, which is the calculation of maximum infor-
mation relevant to the gdfap for every statement in a program.
By Rice’s Theorem, these problems are undecidable in the
general case. However, many gdfaps have been generalized
into frameworks which are decidable. If a function space can
be shown to be monotone [16] and distributive [17] over a
bounded semi-lattice, then the MOP solution can be efficiently
obtained by known algorithms.

As part of this paper, we will show how to map our problem
to a gdfap to find the MOP solution. We will formalize a
Data Flow Analysis (DFA), which is represented as a tuple
(L,t,F ,⊥, L0), where L is the set of lattice elements, t is
the join operation, F is the space of flow functions between
CFG vertices, ⊥ is the bottom element, and L0 is the initial
state of CFG vertices. Functions in F map the set of lattice
elements flowing into the vertex, IN, to the set of lattice
elements flowing out of the vertex, OUT.

IV. PROBLEM STATEMENT AND ASSUMPTIONS

This work addresses the following problem: given an embed-
ded system with real-time constraints, show with high proba-
bility that its running software is genuine and uncompromised,
using only execution side-effects and without interrupting
normal operation.

To attest to the authenticity of a program we will use the
behavior of the power consumption on the prover during its
execution. Recent literature has demonstrated the feasibility of
using power consumption on an embedded device to recover
the execution trace or detect deviations with respect to the
expected patterns in that trace [9], [10], [11], [12]. Like
with any side-effect used for software attestation, this requires

building a model of the power consumption behavior of the
device when executing different sequences of instructions.

This work assumes that a device will prove its authenticity
to its operator. This facilitates enforcing security on the device,
and is in contrast to other contexts, such as privacy related
technologies. In those scenarios, a device may need to prove
its authenticity to a third party, even when the device’s operator
is an untrusted entity (see for example [18]).

We also assume that attackers do not have physical access
to the device, and thus cannot measure the power consumption
profile for the purpose of designing malware that mimics
it. Our technique is therefore well suited for safety-critical
systems such as industrial control systems, medical equipment,
and ground support equipment in the aerospace industry.

We do not address the effect of interrupts, task switching,
or shared libraries in this work. Ignoring these effects does
not greatly reduce the scope of our technique, as hard real-
time requirements often preclude their inclusion. In particular,
we are not targeting battery powered systems where interrupt-
driven operation is commonplace.

V. TECHNIQUE

Our proposed technique uses a compiler assisted static trans-
formation to embed a secret power signature in a given
program. The resulting executable produces a power trace of
our choice, regardless of the program’s original source code
and without changing its semantics.

To implement the technique, the system designer first pro-
files their target processor as described in Section III-B. This
finds the predicted power consumption behavior for each IR
instruction. Profiling is only done once for a processor model,
as each unit has equivalent power characteristics.

The release engineer then chooses a secret power consump-
tion behavior, β, and an error threshold ε. More details on se-
lecting these parameters are included in Sections V-A and VI.

During compilation, the static transformation is applied to
the program, with β and ε used as parameters.

During operation, an external device monitors power con-
sumption to detect deviations from the secret power signature
embedded in the program. Figure 3 sketches this functionality.
If the verifier observes a power trace that is within the error
threshold ε of the target power consumption behavior β, it
does not report an anomaly. If an attacker tampers with the
prover to execute unexpected code, the power trace violates
the error threshold and the verifier raises an alarm.

Fig. 3: Operation Phase

The following sections describe the static transformation
in detail. Section V-A establishes the mechanisms by which
we map the predicted power consumption behaviors for IR
instructions to the target power consumption behavior β.
Section V-B describes the DFA that uses those mechanisms
to find the possible alignments in the target behavior for each
part of the program. Section V-C explains the selection of the
alignments that minimize the overhead, and Section V-D de-
scribes the strategy to fill in the gaps left by those alignments.

A. Relating Power Consumption Behaviors

We will modify the program so that its power consumption
behavior is identical, regardless of the control flow. We choose
a desired power consumption behavior and apply it to the
program using static transformation by a compiler. Since the
problem of knowing how long the program will execute is
equivalent to the halting problem, which is undecidable, we
must choose a finite power consumption behavior and then
modify the program to repeat it until termination.

The power consumption behavior of a program fragment
is given by its corresponding power trace. We represent
such behaviors as a finite-dimensional vector of real numbers
b ∈ Rn, where each dimension in the vector corresponds to a
sample of the instantaneous power consumption.

Definition 1 (notational convention) Given x ∈ Rn, x
def≡

〈x1, x2, · · · , xn〉; i.e., xk denotes the k-th coordinate of x.

Definition 2 (notational convention) Given x ∈ Rn, then
xk,m denotes the m-dimensional vector with coordinates given
by the coordinates of x starting at index k and advancing in
circular sequence. Specifically:

xk,m =


〈xk, xk+1, · · · , xk+m−1〉 k+m6n+1

〈xk, · · · , xn, x1 · · · , xk+m−n−1〉 k+m>n+1,m6n

〈xk, · · · x repeated as needed · · · 〉 m>n

Definition 3 β ∈ Rn is a target power consumption behavior
where each of the n dimensions represents the desired power
consumption at the corresponding time index.

To evaluate the proximity of two power consumption behav-
iors, we use the Euclidean distance between the vectors that
represent them. More formally, given p,q ∈ Rm the distance
between p and q, ‖p− q‖, is given by:

‖p− q‖ =

(
m∑
k=1

(pk − qk)2
) 1

2

(1)

This is a commonly used metric in pattern recognition
techniques [14], and has been successfully used in existing
power-based tracing works [10], [9].

Evaluation of the distance between vectors is only applica-
ble for vectors with the same number of dimensions. The goal
of our static transformation, then, is to reduce the distance
between the behavior b ∈ Rm that we predict to occur
during any execution of the program and the desired behavior
β ∈ Rn, repeated and truncated until its number of dimensions

 0 200 400 600 800 1000 1200 1400 1600

 P

o
w

e
r

Time index

|β|

σ ′ δ1 σ2 δ2 σ3 δ3 σ4 δ4 δ′ (= 245)

m1 m2 m3 m4

IR1 IR2 IR3

IR4

β
β (repeated)

Fig. 4: Applying τ ′ε to a power consumption behavior sequence

is equal to m. For example, if m = 250 and n = 100, then to
find the vector we want to compare to b we create a new tem-
porary vector β1,250 = 〈β1 · · ·β100, β1 · · ·β100, β1 · · ·β50〉.
Typically, we need to compare the desired behavior to the
behavior from a portion of the program. For this we can simply
use an offset from the beginning of the desired behavior.
In our previous example, if we only want to compare the
behavior b = 〈b70 · · · b120〉, we would use a temporary vector
β70,51 = 〈β70 · · ·β100, β1 · · ·β20〉.

Definition 4 τε : Rm × N → N maps a power consumption
behavior b ∈ Rm and a starting index σ : 1 6 σ 6 n for b
in β ∈ Rn to an ending index δ for b in β.

Given a power consumption behavior b ∈ Rm, a desired
behavior β ∈ Rn, a starting offset σ, and a distance threshold
ε, then:

δ = m+min
{
i ∈ [0, n) :

∥∥b− βσ+i,m
∥∥ < ε

}
(2)

τ is parameterized by ε, an error threshold, which defines
the maximum allowed distance between the behavior of the
instruction and the corresponding desired behavior in β.
τ finds the closest dimension index to σ in β where the
instruction behavior may start and the distance between the
two vectors is below ε, then adds the length of the instruction
behavior to find the end index δ.

Definition 5 τ ′ε : (Rm)i ×N→ N applies τ to a sequence of
i power consumption behaviors, finding the end index δ′ in β
of the entire sequence given a start index σ′ in β.

Given a sequence of i power consumption behaviors
b1,b2, · · · ,bi ∈ Rm, a desired behavior β ∈ Rn, a starting
offset σ, and a distance threshold ε, then:

δ′ = τε(bi, τε(· · · τε(b2, τε(b1, σ
′)))) (3)

τ ′ε applies τε to each of the power consumption behaviors
in the sequence, using the δ of each application as the σ of
the next. The result δ′ is the δ from the final application of τε
which corresponds to the end index in β of the final behavior
in the sequence. τ ′ is parameterized by ε, which is used for
every τ in the sequence of applications.

Figure 4 shows an example of applying τ ′ε to the behaviors
for the four IR instructions from Figure 2. The input σ′ = 0,

and the final result δ′ = 245. The individual (σk, δk) pair
for each instruction is found by applying τε to its power
consumption behavior, and each mk signifies the length of
the behavior. For example, for IR2, σ2 is 242, and δ2 is found
to be 609— the first position starting from 242 at which the
distance between IR2’s behavior and β is less than ε. For
IR3, σ3 is therefore 609, the same as δ2. When τε is applied
to IR4, with σ4 = 1158, the position is found by traversing β
circularly, since |β| is only 1220; in the figure, β is repeated
and δ4 is found to be 245.

B. Data Flow Analysis

We introduce a DFA called Side-Effect Transformation Analy-
sis (SETA) to determine the possible start and end trace indices
for each basic block in a program [19]. Once we have found
all of the possible start indices we use a single pass through
the CFG to select the best one for each basic block, and then
a final pass to apply the transformation to each block.

Definition 6 SETA = (L,t,F ,⊥, L0) is a forward, distribu-
tive, monotone DFA framework

Given a desired behavior β ∈ Rn, a CFG (V,E),
and the set of sequences of power consumption behaviors
B = {b1,b2, · · · ,b|V |} : ∀b ∈ B,b ∈ (Rm)i,

L = 2[1,n]×[1,n]

t = ∪
F =

{
f : IN 7→

⋃
(σ,δ)∈IN{(δ, τ ′ε(b, δ))},∀b ∈ B

}
⊥ = ∅
L0 = {(0, 0)}

The flow functions F map the end indices δ of elements of
the IN set to elements in the OUT set where the start indices are
equal and the end indices are found by applying the τ ′ε function
with the given power consumption behavior sequence b.

We find � = ⊆ because t = ∪ and ∀a, b ∈ L,

b � a ⇔ b t a = b
b ≺ a ⇔ b t a = b and a 6= b

Lemma 1 ∀f ∈ F , ` ∈ L, x ∈ f(`), ∃b ∈ B, (σ, δ) ∈ ` :
(δ, τ ′ε(b, δ)) = x.

This follows from F , as the union of such pairs.

Theorem 1 (L,t) forms a bounded semi-lattice

Proof : (L,t) is a special case called a power set lattice [20],
since L is a power set and t = ∪. �

Theorem 2 F is a monotone function space on L. That is,
∀f ∈ F ,∀a, b ∈ L, a � b⇒ f(a) � f(b)

Proof : Suppose, by way of contradiction, that
∃fbad ∈ F ,∃a, b ∈ L : a � b and fbad(a) � fbad(b)

This means that
a ⊆ b, but ∃(σ′, δ′) ∈ fbad(a) : (σ′, δ′) /∈ fbad(b)

By Lemma 1, this implies that
∃(σa, δa) ∈ a : ∀(σb, δb) ∈ b, δa 6= δb

which means that
@(σb, δb) ∈ b : (σb, δb) = (σa, δa)

but a ⊆ b, which is a contradiction. �

Theorem 3 SETA is a distributive DFA framework. That is,
each f ∈ F is a homomorphism on L, or ∀f ∈ F ,∀a, b ∈
L, f(a t b) = f(a) t f(b)

Proof : Suppose, by way of contradiction, that
∃f ∈ F ,∃a, b ∈ L : f(a t b) 6= f(a) t f(b)

There are two cases: first, where f(a t b) � f(a) t f(b)
and second, where f(a) t f(b) � f(a t b).

Case 1: (f(a t b) � f(a) t f(b))

Given the set of all sequences of power consumption
behaviors, B∗ = 2(R

m)i , by Lemma 1,
∀(σ′ab, δ′ab) ∈ f(a t b),∃b ∈ B∗,∃(σab, δab) ∈ (a t b) :

(δab, τ
′
ε(b, δab)) = (σ′ab, δ

′
ab)

Similarly, for f(a),
∀(σ′a, δ′a) ∈ f(a),∃(σa, δa) ∈ a :

(δa, τ
′
ε(b, δa)) = (σ′a, δ

′
a)

and for f(b),
∀(σ′b, δ′b) ∈ f(b),∃(σb, δb) ∈ b :

(δb, τ
′
ε(b, δb)) = (σ′b, δ

′
b)

By hypothesis
∃(σ′ab, δ′ab) ∈ f(a t b) : (σ′ab, δ′ab) /∈ f(a) t f(b)

so it must follow that
∀(σa, δa) ∈ a,∃(σab, δab) ∈ (a t b) : δab 6= δa

and
∀(σb, δb) ∈ b,∃(σab, δab) ∈ (a t b) : δab 6= δb

So it must be that
∃(σab, δab) ∈ (a t b) : (σab, δab) /∈ a, (σab, δab) /∈ b

which is a contradiction.

Case 2: (f(a) t f(b) � f(a t b))

By a similar argument to case 1, we can see that
∃(σa, δa) ∈ a,∃(σb, δb) ∈ b :

(σa, δa) /∈ a t b ∨ (σb, δb) /∈ a t b

which is a contradiction. �

C. Index Selection Pass

The index selection pass identifies the minimum overhead
necessary to align each section of the program with the
target power consumption behavior. When the SETA pass is
complete, a single pass through the CFG chooses the start
index in β of each basic block. The CFG has already been
annotated with all of the options for the start and end indices.

It is enough to perform a single pass to select the best choice.
Each option for a start index corresponds to the possible end
of a predecessor in the CFG. We locally minimize the injected
instruction overhead by choosing the start index that results in
the least number of samples between each basic block and its
predecessors, plus the number that must be added within the
basic block itself.

Given the set of pairs S ⊆ L of start and end indices
obtained from applying SETA, for each basic block, we find
the optimal start index σ̂ as follows, where n = |β|:

σ̂ = argmin
(σ,δ)∈S

(δ − σ) +
∑

(σb,δb)∈S

(σ − σb + n) mod n (4)

Figure 5 illustrates this with an example where we find σ̂
for basic block C. Its S set contains two elements, both of
which originate from the S sets of its predecessors. The cost
for (σ, δ) = (3, 6) is 10 = (6−3)+((3−5+9) mod 9), while
the cost for (σ, δ) = (5, 9) is 6 = (9−5)+((5−3+9) mod 9).
The first part of the calculation (δ − σ) counts the execution
time of C if the (σ, δ) value is chosen. The second part (the
sum term) counts the execution time of instructions that will
be injected between C and its predecessors where their end
indices are not aligned with the start of C. This is further
explained in Section V-D.

Fig. 5: Selecting start and end indices

If the probability of execution for the predecessors of the
basic block are known, we can include them as weights in the
equation to minimize the average overhead:

σ̂ = argmin
(σ,δ)∈S

P(δ,σ)

(
(δ−σ) +

∑
P(σb,δb)

((σ−σb+n) mod n)

)
(5)

where n = |β|, P(σ,δ) is the probability of execution of the
predecessor(s) corresponding to the pair (σ, δ) ∈ S, and the
sum is taken over (σb, δb) ∈ S.

Each (σ, δ) ∈ S may correspond to more than one
predecessor, so P(σ,δ) may include the probability of
execution of more than one basic block. Conversely, more
than one (σ, δ) may correspond to the same predecessor,
so
∑

(σ,δ)∈S P(σ,δ) > 1. This is not a problem because we are
minimizing a cost and only need to weight each component
of that cost by its probability. When more than one (σ, δ)
correspond to the same predecessor, their contributions to the
summation are added redundantly; however, they are added
redundantly for all the choices of (σ, δ), so they cancel out
during comparison.

D. Instruction Injection Pass
After the start and corresponding end indices have been chosen
for each basic block, the final step is to inject the instructions.

The τ ′ε function for each basic block is applied with σ given
by the selected start index from the previous pass. We say
that a gap occurs when there is a difference between the end
index of one power consumption behavior and the beginning
of the next. Where gaps occur in the basic block, we create
and insert instructions which most closely match the behavior
of that gap.

Definition 7 A gap, γ, is the difference between the start index
in β of one power consumption behavior, and the end index
in β of the power consumption behavior that precedes it.

Formally, given a power consumption behavior p ∈ Rm, a
desired behavior β ∈ Rn, and a starting offset σ, we define:

γ , (τε(p, σ)−m)− σ (6)

We must also take into account gaps between basic blocks.
When we choose a start index that does not match the
end index of some predecessors, we must add interstitial
basic blocks. An interstitial basic block contains only injected
instructions and is inserted between the terminator instruction
of the predecessor and the start instruction that it originally
pointed to. Interstitial basic blocks will always use the same
terminator instruction as the predecessor that requires no
interstitial basic block.

Figure 6 shows an example of adding interstitial basic
blocks. In Figure 6a, the target basic block C has a start index
(σ) that corresponds to the end index (δ) of its predecessor B,
so there is a gap (γ = 2) between A and C. In Figure 6b, an
interstitial basic block Aint has been added to fill the gap.

(a) (b)

Fig. 6: Adding interstitial basic blocks

VI. IMPLEMENTATION

Implementing our technique involves initial training on the
prover’s hardware, the selection of a secret key β and error
threshold ε, compilation, and installation of a verifier to
monitor power consumption. This corresponds to the process
illustrated in Figure 3. A more detailed description of the
implementation steps follows.

1) Profile the device by capturing power traces for each IR
instruction, as discussed in Section III-A. This involves
generating and executing binaries that correspond to
each IR instruction, and measuring their power traces.
This need only be done once per processor model. Pre-
vious works have shown that it can be automated [11].

2) Define a target power consumption profile β, as de-
scribed in Definition 3, which serves as a secret key.

A separate β should be chosen for each device and
deployment of the software.

3) Choose an error threshold ε, as per Definition 4. This
threshold should be as low as possible to maximize the
efficacy of the technique, and high enough to ensure that
the static transformation procedure succeeds. Roughly
speaking, ε should be in the same order as the largest
values of the variance in the training profile.

4) Compile the program, applying our technique to embed
the target power consumption behavior and produce
an instrumented binary. We created an implementation
using the LLVM compiler framework [21], and others
can be easily created using the description in this paper.

5) Install a verifier system to continuously measure power
consumption of the prover and compare against β. This
monitoring system should use pattern recognition tech-
niques, mentioned in Section III-A, to detect deviations
in the expected device’s behavior. This is beyond the
scope of this paper, but there is ample evidence that this
is a feasible task [10], [9], [12], [11].

VII. DISCUSSION AND FUTURE WORK

Like all software attestation schemes, our approach offers
security assurances without the need for expensive trusted
hardware. However, our method verifies running software,
instead of trying to verify the contents of memory. Our
technique is also less intrusive, making it suitable for use in
systems with real-time requirements.

We incorporate a physically independent verifier, which
monitors an externally visible side-effect of the prover’s op-
eration. This limits attacks to those that affect the prover
without disrupting that side-effect. Such attacks are infeasible
without access to the target power consumption behavior β
or the instrumented binary. This is an advantage over existing
approaches, where the side-effects are monitored on the prover
and can be forged by an attacker.

One concern is whether real-time requirements will be
met after code injection. In this work, we emphasized the
importance of consistent timing over speed, but the amount
of extra code injected depends directly on the threshold ε
and the choice of β. In a practical implementation the system
should assist users with verifying these timing requirements
after instrumentation of the binary.

The choice of ε and β also determines whether the algo-
rithm succeeds: an ε too low, or a β with no segments close
to the IR power traces, make it impossible to find matching
positions in β for the instructions. An actual implementation
could assist the user in determining these parameters.

There are many additional avenues for extension of our
method. Considering systems with cooperative multitasking
is a promising research direction, although this may require
recompiling parts of the operating system. We would also
like to explore the applicability of our approach to systems
with interrupts. In the case of periodic interrupts, which is a
common paradigm, it may suffice to align the interrupt period
to a multiple of the length of β.

VIII. CONCLUSION

In this paper, we proposed a novel technique to verify the
authenticity of the executing software using power consump-
tion. This was made possible through a compiler optimization
stage designed to statically modify a program so that its power
consumption behavior was known in advance.

Our proposed method is well suited to real-time systems,
and we expect that this work will lead to further research into
software attestation with non-traditional side-effects.

ACKNOWLEDGMENTS

The first author would like to thank Dr. Nomair Naeem
for fruitful discussions and ideas. This research has been
supported in part by the Natural Sciences and Engineering Re-
search Council of Canada, the Ontario Centres of Excellence,
and the Ontario Research Fund.

REFERENCES

[1] Kinney, Steven L., Trusted Platform Module Basics: Using TPM in
Embedded Systems (Embedded Technology). Newnes, 2006.

[2] Sadeghi, Ahmad-Reza and Stüble, Christian, “Property-based Attestation
for Computing Platforms: Caring About Properties, Not Mechanisms,”
in Workshop on New Security Paradigms. ACM, 2004.

[3] Armknecht, Frederik and Sadeghi, Ahmad-Reza and Schulz, Steffen and
Wachsmann, Christian, “A Security Framework for the Analysis and
Design of Software Attestation,” in ACM CCS, 2013.

[4] Kennell, Rick and Jamieson, Leah H., “Establishing the Genuinity of
Remote Computer Systems,” in USENIX Security Symposium, 2003.

[5] Seshadri, A. and Perrig, A. and van Doorn, L. and Khosla, P., “SWATT:
SoftWare-Based Attestation for Embedded Devices,” in IEEE Sympo-
sium on Security and Privacy, 2004.

[6] Shankar, Umesh and Chew, Monica and Tygar, J. D., “Side Effects
Are Not Sufficient to Authenticate Software,” in USENIX Security
Symposium, 2004.

[7] Castelluccia, Claude and Francillon, Aurélien and Perito, Daniele and
Soriente, Claudio, “On the difficulty of software-based attestation of
embedded devices,” in ACM CCS, 2009.

[8] Shacham, Hovav, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in ACM CCS, 2007.

[9] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a Side Channel
Based Disassembler.” Springer Berlin Heidelberg, 2010, pp. 78–99.

[10] C. Moreno, S. Fischmeister, and M. A. Hasan, “Non-intrusive Program
Tracing and Debugging of Deployed Embedded Systems Through Side-
Channel Analysis,” LCTES, 2013.

[11] C. Moreno, S. Kauffman, and S. Fischmeister, “Efficient Program
Tracing and Monitoring Through Power Consumption – With A Little
Help From The Compiler,” DATE, 2016.

[12] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu, and
K. Fu, “WattsUpDoc: Power Side Channels to Nonintrusively Discover
Untargeted Malware on Embedded Medical Devices,” 2013.

[13] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances
in Cryptology, 1999.

[14] Andrew R. Webb and Keith D. Copsey, Statistical Pattern Recognition,
3rd ed. Wiley, 2011.

[15] Chris Lattner and the LLVM Developer Group, “The LLVM Compiler
Infrastructure – online documentation,” http://llvm.org.

[16] Kam, John B and Ullman, Jeffrey D, “Monotone data flow analysis
frameworks,” Acta Informatica, vol. 7, no. 3, pp. 305–317, 1977.

[17] Kildall, Gary A., “A Unified Approach to Global Program Optimiza-
tion,” in Symposium on Principles of Programming Languages, 1973.

[18] Williams, Peter and Sion, Radu, “Usable PIR,” in NDSS, 2008.
[19] Aho, Alfred V and Ullman, Jeffrey D, The theory of parsing, translation,

and compiling. Prentice-Hall, Inc., 1972.
[20] S. Warner, Modern algebra. Courier Corporation, 1990.
[21] S. Kauffman, “SETA Source Code,” 2016. [Online]. Available:

https://bitbucket.org/seanmk/sideeffect-transform

