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Abstract. In runtime verification, a monitor is used to return a Boolean
verdict on the behavior of a system. We present several examples of the
use of monitors to instead document system behavior. In doing so, we
demonstrate how runtime verification can be combined with techniques
from data science to provide novel forms of program analysis.

1 Introduction

The phrase “show me the code”1 is well known amongst programmers, and re-
flects the need, and even desire, to read code in order to understand how it
works. However, code can be arbitrarily complex and hard to comprehend, even
for the most experienced. Program documentation, after all, remains the best
way to convey information between humans about how a program works. Un-
fortunately, many software products are created without proper documentation.
We can distinguish between at least three kinds of users of documentation: the
programmer who wants to modify the code, the programmer who wants to use
the code (e.g. a user of Python’s matplotlib library), and finally the person that
just wants to use the code as an application (e.g. a user of www.github.com).

When we think of documentation, we usually think of what we shall refer
to as static documentation. Static documentation is ideally written once and
does not change unless improved or modified due to changes in the software.
Static documentation includes, but is not limited to, comments in the code.
From comments in a special format, API documentation can be generated, as
e.g. with JavaDoc [25], meant for programmers using the code as a library. Static
documentation can also take the form of user guides or requirements documents.
Documentation can be graphical as well as text-based. For example, sequence
diagrams [38] are commonly used in requirements documents to illustrate the
typical (happy-flow) behavior of an application. Graphical documentation can
even be generated automatically from the code, as shown in [39]. Formalized
specifications of the code can also function as documentation. This includes tests
(unit, functional, or integration). That is, every pair of (input, expected output)

⋆ The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

1 The full quote, “Talk is cheap. Show me the code.”, is attributed to Linus Torvalds.
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provides a concrete, easy-to-understand example of how the code is supposed
to behave. Formal specifications of code fragments, such as specifications in
JML [8] can also function as documentation. The key point is that there are
static artifacts that explain the code in a different manner than the code itself.

We shall, however, focus on what we shall refer to as dynamic documentation,
by which we mean documentation of program executions. Producing debugging
output can be considered dynamic documentation. However, one can put extra
emphasis on producing comprehensible and helpful output in debugging mode
as well as in production. In this paper we shall further narrow the scope and
approach this topic with a starting point in the field of Runtime Verification
(RV). Runtime verification is a broad field effectively covering any analysis of
program/system executions. However, a common focus in literature is the verifi-
cation of a program execution against a formal specification to determine whether
the execution is well-formed, resulting in a Boolean (true,false) verdict. Exam-
ples of RV systems include [32,31,10,3,5,4,21,36,17,2]. We shall illustrate how one
can go beyond the Boolean verdict domain by providing three examples of how
runtime verification can be integrated with the broader field of data analysis, for
the purpose of documenting program executions. Note that this augmentation
of classical runtime verification from the Boolean domain to rich data domains
has been studied in other work. In [7] the MFotl logic of the MonPoly tool was
augmented with aggregators for computing sums, averages, etc over traces. An-
other approach is found in stream processing tools [14,19,12,37,18] which from
streams of inputs (including the trace) produce new streams of data. Here, we
illustrate different approaches using both standard data analysis tools and run-
time verification tools provided as Python [34] libraries.

From a documentation point of view, a monitor specification provides a suc-
cinct piece of static documentation of the required behavior of a program. For
example, in a tool like CommaSuite [11], program behavior is specified at the
level of interfaces. Interface signatures show which methods are available, and
possibly which callbacks are to be expected on an interface. As such, these doc-
ument the “statics” of the interface. Interface protocols are state machines that
specify the order in which calls and callbacks are allowed to occur. This is also
static documentation. However, executing such a monitor provides dynamic doc-
umentation of the interface.

When running a monitor, either on a log previously produced by an executing
program, or in parallel with an executing program, it will (in the basic verification
case) complain when the execution does not satisfy the property specified. In this
case, an explanation may be produced as well, e.g. the part the log which caused
the failure. If no failures are encountered, the monitor will only report “all ok”.
Whether it fails or not on an execution is useful information. However, it may
also be useful to get additional information during nominal executions.

In this paper, we present three examples of how runtime verification (un-
derstood in the classical verification sense) can be augmented to perform data
analysis, which, according to [15] is the “process of inspecting, cleansing, trans-
forming, and modelling data with the goal of discovering useful information,
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informing conclusions, and supporting decision-making”. Formulated differently,
we shall produce data in rich data domains, including visualizations, rather than
just Boolean verdicts.

The paper is organized as follows. We begin in Section 2 by discussing the
dynamic documentation problem of state reconstruction, where a sequence of
events are used to reconstruct the state of a program. We provide a simple
example of state reconstruction using Python and then discuss examples we
have observed in industrial practice. This leads us to a more complex example
of dynamic documentation in Section 3, where we demonstrate visualization of
events using the RV tool, PyContract [13]. The example has been examined using
classical, Boolean valued, RV before, but we extend this analysis to examine the
cause of failures and learn something new about how they occur. Finally, in
Section 4, we show how the RV tool, nfer [28], can be used for debugging a
timing problem in a program. We present an example where inconsistent timing
would be difficult to debug using traditional methods and show how documenting
the problem is possible using an RV tool and its visualization capabilities. We
conclude in Section 5.

2 State Reconstruction with Python

A common use of dynamic documentation in industrial practice is for state re-
construction. A log file often records events rather than state, i.e. it shows what
happens instead of what is. When analyzing a log file, typically in order to iden-
tify the root cause of an observed anomaly or failure, it is helpful to be able to
inspect the state of a system at various points during execution. In such a case,
a runtime monitor can be used to reconstruct the system state in between every
two events recorded in a log file.

2.1 Robot tracking example

We use a simple example to illustrate this. Consider a robot that moves along
the points of an (x, y) grid. It receives commands such as (W, 6), telling it to
move in western direction for 6 meters. These commands are recorded in a log
file, which may then start as follows:

Time Direction Distance
00:00 N 5
01:00 E 2
02:00 S 8
03:00 W 4

In order to reconstruct the position of the robot after every command, a simple
state machine is defined, shown (in Python syntax) in Figure 1. Note that this is
an Extended Finite State Machine: its states are positions (x, y), with the initial
state being (0, 0). Its transition relation (move) takes an command consisting of
a direction and a distance, and updates the state accordingly.
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1 class Pos:
2 x: int = 0
3 y: int = 0
4

5 def __repr__(self):
6 return f"({self.x}, {self.y})"
7

8 def move(self , vec):
9 direction = vec[0]

10 distance = vec[1]
11 if direction == "N":
12 self.y += distance
13 elif direction == "E":
14 self.x += distance
15 elif direction == "S":
16 self.y -= distance
17 elif direction == "W":
18 self.x -= distance
19 return (self.x, self.y)

Fig. 1: State machine tracking a robot’s position

We can feed this state machine with a sequence of commands and print the
resulting position, as follows:

1 commands = [("N", 5), ("E", 2), ("S", 8), ("W", 4)]
2 pos = Pos()
3 for cmd in commands:
4 pos.move(cmd)
5 print(pos)

which outputs

1 (-2, -3)

In order to decorate the log file shown above, the state machine is fed each of
the events from the log, and the resulting state is added in an additional column
in the log file:

Time Direction Distance Position
00:00 N 5 (0, 5)
01:00 E 2 (2, 5)
02:00 S 8 (2, -3)
03:00 W 4 (-2, -3)

2.2 Other examples from industrial practice

In embedded systems, software interacts with, and often controls, the operation
of physical (mechanical or electronic) components. When analyzing logs of sys-
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tems, e.g. to track down the root cause of a malfunction, it is useful to be able
to inspect the state of the physical components at any given point in the log
file. In our interactions with software developers we have come across several
examples of this. Here, we give some examples coming from a log analysis tool
that is being used in the production of control software for a piece of high-tech
equipment that consists of several components.

Each component has multiple led indicator lights. The leds can be in one of
the modes off, on, or blinking. The commands that control the leds (TurnOn(ledi),
TurnOff(ledi), SetBlinking(ledi)) are logged. At any point in the log file, the
mode of each led can be known by finding the most recent command for this led.
The log analysis tool used by the engineers uses a simple state machine, whose
state indicates the modes of all leds, and whose transitions fire to update the
state at every occurrence of one of the mentioned commands. The tool produces
an interactive table showing the full log, in which clicking on a particular row
(log line) opens a separate view displaying the sequence of all states that the
collective leds assume. This view is again a table in which there is a column for
each led, showing its mode after every change of state.

One component of the machine is a multi-segment robot arm that can move
in 3 dimensions. The commands that control the overall position of the arm
are logged, so that its position in space at any moment can be reconstructed
by adding up the commands so far, much like in the introductory example in
Section 2.1. In this case, the state of the arm is displayed by using a visualization
in a 3D modeling environment. Any point in the log file can be selected, a button
clicked, and the animated arm position shows up instantly in a pop-up window.
This gives engineers a powerful tool to understand the behavior of the system,
which is crucial in root cause analysis.

In our conversations with engineers, we realized that “the state of the sys-
tem” has a different meaning to different people, usually reflecting their specific
domain of expertise. For the mechanical engineer, the state of the system may
be the position of the robot arm, while for the user interaction designer it may
be the position of the joysticks and pedals that are used to operate the system.
The abstract notion of a state machine to monitor “what the system is doing”
at any point in time caters for all these different views of state.

3 Visualization with PyContract

We shall illustrate the transition from classical Boolean valued runtime verifica-
tion to data analysis with a case study originally presented in [6]. The case study
concerns a data-collection campaign performed by Nokia [1]. The campaign was
launched in 2009, and collected information from cell phones of approximately
180 participants. The data collected were inserted into three databases db1,
db2, and db3, as shown on Figure 2. The phones periodically upload their data
to database db1. Every night, a script copies the data from db1 to db2. The
script can execute for up to 6 hours. Furthermore, triggers running on db2
anonymize and copy the data to db3, where researchers can access and analyze
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the anonymized data. These triggers execute immediately and take less than one
minute to finish. The participants can access and delete their own data using a
web interface to db1.

db1 db2 db3

u
p
lo
a
d

delete

participants

insert

delete

researchers

anonymize

query

Fig. 2: Nokia’s data-collection campaign

This is a distributed application producing events in different locations that
then have to be merged into one log. The log produced, consisting of these and
other events, contains 218 million events. In the case where two events have the
same time stamp, there is no way to know which event comes before the other
in the merged log. This is referred to as a collapse of an interleaving in [6], and
leads to some intricate temporal properties.

The collected data must satisfy certain policies for how data are propagated
between databases. One of these is shown in Figure 3, expressed in the first-
order linear temporal logic Mfotl [7]. The property states that data (different
from unknown) inserted in db1 must be inserted into db2 within 30 hours (by
a script), unless it is being deleted from db1 before then. Note that the deletion
from db1 or insertion in db2 may occur at the same time (within the same
second) as the insertion in db1 but appear earlier due to the collapse of an
interleaving problem. Hence we have to check for these events “within a second
in the past” as well as 30 hours in the future.

□ ∀user · ∀data · insert(user, db1, data) ∧ data ̸= unknown →
♦[0,1s)♢[0,30h) ∃user′·

insert(user′, db2, data) ∨ delete(user′, db1, data)

Fig. 3: The Ins1_1 property from [7]

We first present a classical Boolean verdict monitor of this property, and
then subsequently augment this monitor with data analysis. These monitors are
written using the RV tool, PyContract [13], a library for monitoring in Python
with an automata-like syntax. In [22] the case study is analyzed with the run-
time verification tool Daut [16,20] and the static analysis tool Cobra [24,9]. Our
PyContract monitors resemble the Daut monitor in [22].
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3.1 The Boolean verdict monitor

We assume the definition of two class constructors Ins(time, user, db, data) and
Del(time, user, db, data) for representing insertion and deletion events such as
Ins(1000,"Adda",Db.ONE,3742) and Del(2000,"Adda",Db.ONE,3742). Figure 4
shows a Boolean verdict monitor in PyContract for the Ins1_1 property. First the
PyContract library is imported (line 1), and its contents subsequently referred to
prefixed with pc. A monitor, in this case Verifier, in PyContract is defined as
a class extending the class pc.Monitor. The monitor defines a main transition
function (lines 4-12), and two explicitly named states: I2D1 (lines 14-22) and
Track (lines 24-35), both of which are parameterized with a time stamp and a
data value.

The main transition function (lines 4-12) is always enabled. It takes an event
as its argument and returns a new state2. Pattern matching3 is conveniently
used to determine which event is being submitted. The first case states that
if we observe an insertion into db2 or a deletion from database db1, then we
create a I2D1 state, parameterized with the time t and the data d, representing
the fact that that data was inserted in db2 or deleted from db1. This is our way
of remembering the past. Note that when matching against a dotted name, such
as Db.ONE and Db.TWO, the incoming value has to match exactly. In contrast, an
unqualified name, such as t and d (i.e. a bare name with no dots), is interpreted
as a capture pattern, binding the incoming value to the name. The second case
covers the situation where the observed event is an insertion into db1. In this
case, if there exists a I2D1(t, d) fact in the fact memory (line 9), with the same
time stamp t as the insertion (due to the collapse of an interleaving problem)
and the same data d, then the property is satisfied for this data, and we return
pc.ok, causing the state to be removed from the monitor memory. Note how
a state object, here Verifier.I2D1(t, d) can be used as a Boolean condition.
Otherwise we return a Track(t,d) state (line 12), which will track the data d.

The I2D1 state, (lines 14-22) extends the State class. The state also defines a
transition function which returns pc.ok upon observing an event that is more
than a second apart from the time stamp that was passed as argument, thereby
causing the state to be removed from memory. This is done for efficiency reasons
to avoid storing unnecessary states. Note that a state does not need to contain
a transition function, in which case it becomes a persistent state, just a data
record representing a fact about the past.

The Track state (lines 24-35) extends HotState meaning that it is an error
for such a state to exist in the monitor memory at the end of the trace, and
represents the property that some event needs to occur. The state also contains
a transition function. The first case observes an event with a time stamp more
than 30 hours (108,000 seconds) since the insertion of the data in database db1.
This represents the violation of the property. The second case covers the correct
insertion of the data into db2 or deletion from db1 within the 30 hours.

2 PyContract generally permits returning a list of states.
3 Pattern matching was introduced in Python version 3.10 [35].
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1 import pycontract as pc
2

3 class Verifier(pc.Monitor ):
4 def transition(self , event):
5 match event:
6 case Ins(t, _, Db.TWO , d) | Del(t, _, Db.ONE , d):
7 return Verifier.I2D1(t, d)
8 case Ins(t, _, Db.ONE , d) if d != ’[unknown]’:
9 if Verifier.I2D1(t, d):

10 return pc.ok
11 else:
12 return Verifier.Track(t, d)
13

14 @pc.data
15 class I2D1(pc.State):
16 time : int
17 data : str
18

19 def transition(self , event):
20 match event:
21 case e if e.time - self.time > 1:
22 return pc.ok
23

24 @pc.data
25 class Track(pc.HotState ):
26 time: int
27 data: str
28

29 def transition(self , event):
30 match event:
31 case e if e.time - self.time > 108000:
32 return pc.error(’30 hours have passed ’)
33 case Ins(_, _, Db.TWO , self.data) |
34 Del(_, _, Db.ONE , self.data):
35 return pc.ok

Fig. 4: The Boolean verdict monitor code

Running the monitor on the first 2 million events in the log causes several
error messages to be issued, triggered by the 30 hour deadline being passed. The
following is an example of such an error message:

*** error transition in Verifier:
state Track (1276508300 , ’96563613 ’)
event 255 Ins(time =1277200698 , user=’script ’,

database=<Db.TWO: 2>, data=’66935671 ’)
time since insertion: 692398 seconds
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The error message is due to an insertion into db1 followed by an event more than
30 hours (108,000 seconds) later, without an insertion of the same data in db2
in between. A Track state was created at time 1276508300 due to the insertion
of data ’96563613’ into db1. The error message is a result of subsequently en-
countering an Ins (insert) event (number 255) at time 1277200698 into database
db2 of some other data. The latter event indicates that more than 30 hours have
passed since the insertion into db1 of the data ’96563613’.

3.2 Augmenting the Boolean verdict monitor for visualization

We may now be interested in better understanding the pattern of these viola-
tions. This can be achieved by e.g. visualizing the time, referred to as duration,
from when a piece of data is inserted into db1 until it is either inserted into
db2 or deleted from db1. We augment our monitor with data analysis, going
beyond the Boolean domain. Note that we can easily do this in PyContract since
a monitor is just a Python class and we can use all the features that Python
supports, including numerous data analysis libraries.

Figure 5 shows the augmented monitor. We first define an __init__ function
(lines 2-4), which initializes a monitor local variable durations, which is a list of
tuples (time, dur) where dur is an observed duration from when a piece of data
is inserted into db1 until it is resolved: inserted into db2 or deleted from db1,
and time is the time of the resolve. We then augment the transition function
in the Track state. Specifically we add a statement (lines 18-19) recording the
duration from insertion into db1 to failure caused by 30 hours having passed, and
a statement 23-24), recording the duration from insertion into db1 to insertion
into db2 or deletion from db1.

At the end of monitoring the first 2 million events of the log we can now
process the durations variable. The method to_graph4 (line 6) processes this
variable and graphs the durations (y-axis) as a function of time (x-axis). It
also introduces a horizontal line representing the average duration and a line
representing the 30 hour deadline. The result is shown in Figure 6a. It shows
that all the durations are above the 30 hour deadline and that there really only
are two time points where these errors are reported (the thick dots). This is
not the pattern we expected of the first two million events in the log, where we
would have expected that some durations are within the 30 hour deadline. To
understand this better we also plotted the number of Track states, as can be seen
in Figure 6b. This shows that there is an initial creation of Track states, then a
release of all these causing the first set of errors, and again immediately a new
boost of creations, and then again a release, causing errors. The visualization
has thus given us some better understanding of the work of the monitor, beyond
Boolean verdicts.

To illustrate the expected result, we created an artificial log of 10,000 events,
with insertions into db1 occurring randomly time wise, and deletions from db1

4 We have not shown the contents of this function. It is 10 lines of code, and uses
Python’s matplotlib.pyplot, pandas, and statistics libraries.
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and insertions into db2 occurring randomly according to a Gaussian distribution
reflecting the frequency of the script that updates db2. The resulting durations
are shown in Figure 7a and the number of active states are shown in Figure 7b.

1 class Verifier(pc.Monitor ):
2 def __init__(self):
3 super (). __init__ ()
4 self.durations: List[tuple[int ,float ]] = []
5

6 def to_graph(self): ...
7

8 ...
9

10 @pc.data
11 class Track(pc.HotState ):
12 time: int
13 data: str
14

15 def transition(self , event):
16 match event:
17 case e if e.time - self.time > 108000:
18 self.monitor.durations.append(
19 (e.time , e.time - self.time))
20 return pc.error(f’30 hours have passed ’)
21 case Ins(_, _, Db.TWO , self.data) |
22 Del(_, _, Db.ONE , self.data):
23 self.monitor.durations.append(
24 (e.time , e.time - self.time))
25 return pc.ok

Fig. 5: The monitor code augmented for failure analysis

4 Timing Debugging with nfer

In this section we show how an RV tool built for analyzing event traces may
be applied to annotate and debug the execution of a program. We choose as an
example a popular open-source Python program called xhtml2pdf that takes a
URI as an input and converts the website at that address to a local PDF file [23].
This tool is a good example because it performs a complex task and, because it
must download the contents of a website, involves substantial input/output. The
input/output is useful for our purposes because different parts of the program
must wait for downloads to finish, leading to interesting timing behavior. We
used xhtml2pdf version 0.2.8, cloned from the project git repository.

To perform the analysis, we used the Python interface of the RV tool nfer.
Nfer is a language and tool for the abstraction and analysis of event traces [28,29].
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(a) Durations (b) Active Track states

Fig. 6: Graphs for first 2 million events of Nokia log.

(a) Durations (b) Active Track states

Fig. 7: Graphs for test log with 10,000 events.

It was originally designed to improve human and machine comprehension of
telemetry from the Mars Science Laboratory (MSL) [33], more commonly known
as the Curiosity Rover. Although the language was originally intended for offline
(batch) analysis, its implementation supports online monitoring and includes
an integration with the Python language [27]. The nfer Python module can be
installed using PyPi, Python’s package manager [26].

We now consider an example where we must analyze the timing behavior an
execution of the xhtml2pdf program to debug a problem. In this example, we
have introduced a timing delay in the program when a certain piece of data is
encountered. Specifically, in the NetworkFileURI class, we added a delay to the
extract_data method when it encounters a photo of Klaus Havelund, one of the
authors of this paper. While the problem in this case is contrived, such errors
occur in real programs and pose challenges for developers. This type of problem
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is difficult to debug for a number of reasons: 1. the problem is intermittent
and depends on data, so it is hard to reproduce reliably, 2. using a debugger
to find the problem does not work because it will interrupt the timing of the
application, and 3. if the timing of the function is variable for other reasons then
adding logging may not provide enough information to isolate the execution in
question.

We now show how nfer can be used to debug such an intermittent timing
problem. First, the program must be instrumented so that its execution can
be recorded. Functions may be instrumented using the watch decorator, or, to
instrument an entire package or module, nfer provides the instrument function.
Once the program is instrumented, its execution can be visualized using the
web-based Graphical User Interface (GUI) distributed with nfer.

The code that instruments and visualizes xhtml2pdf is shown in Figure 8
starting on line 7. The code is inserted prior to calling the main entry point of
the program, a function called execute. Lines 7 and 8 import the instrument
and gui functions from nfer while line 10 instruments the classes and functions in
the xhtml2pdf package and line 11 launches the GUI in a web browser. The gui
function is non-blocking and causes a web server to run in a separate process,
allowing it to mostly avoid interfering with the timing of the program.

1 def command ():
2 if "--profile" in sys.argv:
3 print ("*** PROFILING ENABLED")
4 # profiling code removed from figure
5 else:
6 ## nfer instrumentation and visualization ##
7 from nfer.instrument import instrument
8 from nfer.gui import gui
9

10 instrument("xhtml2pdf")
11 gui()
12 ############################################
13 execute ()

Fig. 8: Instrumenting and visualizing a program execution with nfer

The nfer instrument function works using Python’s inspect module to ana-
lyze the environment at runtime. It iterates over loaded packages and modules,
looking for callable functions and methods and instrumenting them using the
nfer decorator, watch. The watch decorator wraps a function so that, when it
is called, a timer captures the timestamps before and after it executes. The
decorated function execution is then reported to nfer as an interval, with the
arguments and return value of the function associated as data elements.

As these intervals are reported, they are visualized in the nfer GUI with
an update delay of at most one second. The result of running such an instru-
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mented copy of xhtml2pdf on the website http://havelund.com can be seen in
Figure 9. In the figure, five interval names corresponding to five functions have
been selected for display. The main display shows each execution of the func-
tions on a timeline, where overlapping executions indicate that they happened
concurrently. For example, the bottom interval in the figure (in blue) shows an
execution of the pisaParser function that began shortly after second :36 and
ended shortly before second :44. The GUI has been zoomed out to show the
whole execution using the timeline at the bottom of the figure, where the green
box shows the visible portion of the timeline.

Fig. 9: Nfer GUI from the instrumented xhtml2pdf

The figure contains a clue as to the execution of extract_data with the
timing delay. Each of the top (in green) intervals correspond to executions of
extract_data, while all of the intervals immediately below (in orange) corre-
spond to executions of the get_httplib function. In the figure, each extract_data
interval is matched by a get_httplib interval except in one case where the
get_httplib interval appears to end early. This clearly visualizes the timing
problem. By examining the interval in the GUI (not shown), we can see that the
shorter get_httplib execution was passed an argument of http://havelund.
com/havelund.jpg. It is important to note that this is not possible to conclude
by examining the delayed extract_data call on its own, since it is not passed
the URI as an argument.

In many cases, the automatically instrumented function calls may not be
sufficient to find a timing delay such as the one shown above. For example, if the
function with the delay was executed many millions of times, finding one instance
with a simple visual inspection could be difficult. Nfer allows the user to write
problem-specific rules that define custom intervals. These rules define intervals
using relationships between other, existing intervals including the automatically
generated ones. Figure 10 shows how to add an nfer rule using the Python in-
terface as an alternative to the automatic instrumentation visualized above. In
the figure, line 2 tells nfer to look for executions of NetworkFileUri.get_httplib

http://havelund.com
http://havelund.com/havelund.jpg
http://havelund.com/havelund.jpg
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and give them the abbreviation get for easier reference (done with the get: nota-
tion). Line 3 then adds that we are only interested in executions of get_httplib
that occur during executions of NetworkFileUri.extract_data. These execu-
tions are abbreviated as extract. On line 4, the matched executions are filtered
to include only those where the extract_data execution continues more than
100 milliseconds after the get_httplib execution ends. Line 5 tells nfer that the
generated intervals should include a piece of data named “resource” that contains
the arguments to get_httplib, and line 6 names the created interval delayed so
it is easier to identify in the GUI. The nfer formalism is designed to be concise
and expressive [30] and its Python interface supports its complete syntax.

1 monitor(
2 when("get:NetworkFileUri.get_httplib")
3 .during("extract:NetworkFileUri.extract_data")
4 .where("extract.end - get.end > 100")
5 .map("resource", "get.args")
6 .name("delayed")
7 )

Fig. 10: Monitoring an nfer rule

Figure 11 shows the nfer GUI, zoomed in on a shorter time span and only
showing the get_httplib, extract_data, and delayed intevals. In the figure,
the same suspicious gap is visible in duration between the execution of the
extract_data (on the top line, in orange) and get_httplib (on the second line,
in blue) functions. Now, however, the third line (in purple) shows an instance of
the delayed interval that nfer reported due to the rule in Figure 10. The image
shows how hovering the mouse over the delayed interval displays the resource
that caused the delay.

5 Conclusion

In this work we presented the notion of dynamic documentation in the form of
data analysis anchored in runtime verification. Some runtime verification tools
can process and output more information than pure Boolean verdicts, and these
capabilities may be leveraged for documenting program executions. We showed
three examples of this idea, demonstrating state reconstruction, failure analysis,
and timing debugging, using trace visualization as a tool. These examples demon-
strate that dynamic documentation using runtime verification is both possible
and effective. More work can be done to develop the concept of dynamic docu-
mentation. For one, theories should be developed and tested on what kinds of
dynamic documentation are helpful when developing and maintaining programs.
Other technologies are relevant, for example using machine learning techniques
such as specification mining, which can be thought of as a form of data analysis.
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Fig. 11: Nfer GUI zoomed in and showing the additional annotation
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