
Efficient Program Tracing And Monitoring Through Power
Consumption – With A Little Help From The Compiler

Carlos Moreno
Electrical and Computer Engineering

University of Waterloo, Canada.
Email: cmoreno@uwaterloo.ca

Sean Kauffman
School of Computer Science

University of Waterloo, Canada.
Email: skauffma@uwaterloo.ca

Sebastian Fischmeister
Electrical and Computer Engineering

University of Waterloo, Canada.
Email: sfischme@uwaterloo.ca

Abstract—Ensuring correctness and enforcing security are
growing concerns given the complexity of modern connected
devices and safety-critical systems. A promising approach is
non-intrusive runtime monitoring through reconstruction of pro-
gram execution traces from power consumption measurements.
This can be used for verification, validation, debugging, and
security purposes.

In this paper, we propose a framework for increasing the
effectiveness of power-based program tracing techniques. These
systems determine the most likely block of source code that
produced an observed power trace (CPU power consumption as
a function of time). Our framework maximizes distinguishability
between power traces for different code blocks. To this end,
we provide a special compiler optimization stage that reorders
intermediate representation (IR) and determines the reorderings
that lead to power traces with highest distances between each
other, thus reducing the probability of misclassification. Our work
includes an experimental evaluation, using LLVM for an ARM
architecture. Experimental results confirm the effectiveness of
our technique.

I. INTRODUCTION

Modern connected devices and safety-critical systems are
rapidly increasing in complexity and functionality. Conse-
quently, there is growing interest in runtime monitoring for
the purpose of ensuring correctness and enforcing security. The
complexity of modern systems makes it difficult to incorporate
runtime monitoring tools that work alongside the rest of the
software without breaking extra-functional requirements such
as timing constraints.

A promising approach is non-intrusive monitoring through
reconstruction of program execution traces from power con-
sumption measurements. This can be used for verification,
validation, debugging, and security purposes. Moreno et al. [1]
presented a novel approach where power consumption is used
to reconstruct program traces. This is accomplished through
the use of statistical pattern recognition techniques, where
the system determines the most likely fragment of code that
produced an observed power trace (captured sequence of
power consumption as a function of time) [2].

Eisenbarth et al. [3] attempted a similar technique, targeting
assembly-level instructions. However, at this fine granularity,
the reported performance was too low for a practical appli-
cation. Clark et al. [4] presented a malware detector based
on side-channel analysis (power consumption) for medical
devices. Their technique, however, is limited in that it operates

at the granularity level of the execution of the entire program,
and that it relies on the device executing a simple and highly
repetitive task.

In this paper, we propose a framework for increasing the
effectiveness of power-based program tracing techniques. We
focus on the techniques that use classifiers to determine most
likely blocks of code that produced the observed power traces.
Our framework increases the effectiveness of this classifica-
tion process by maximizing distinguishability between power
traces for different code blocks. To this end, we provide a
special compiler optimization stage that affects the code gen-
eration and layout with distinguishability as the optimization
criterion. This optimization stage reorders intermediate repre-
sentation (IR) instructions and estimates the resulting power
trace for a given reordering. It then determines the reorderings
that lead to power traces with highest distances between each
other, thus reducing the probability of misclassification.

An additional feature in our framework with respect to the
work presented in [1] is the use of the control flow graph
(CFG) [5]. Our approach assumes the use of the CFG to
constrain the classification process and only consider valid se-
quences of blocks; given the sequence of blocks that executed
in the immediate past, the CFG indicates the set of blocks
that can be currently executing. Thus, the classifier only needs
to consider those blocks as candidates in the classification
process. As a consequence, the compiler optimization stage
only needs to maximize distinguishability between blocks
corresponding to sibling nodes in the CFG (i.e., nodes with a
common parent).

Our work includes an experimental evaluation, implemented
using LLVM [6] with an Atmel SAM D21 ARM MCU [7].
Results from our experiments confirm the soundness of our
approach and the potential for usability in practical scenarios.

The remainder of this paper proceeds as follows: we start
with a brief background review in Section II. We describe our
proposed approach in Section III, followed by the details of our
experiments (sections IV and V). We finish with a discussion
in Section VI and some concluding remarks in Section VII.

II. BACKGROUND – STATISTICAL PATTERN RECOGNITION

Our proposed framework focuses on power-based tracing tech-
niques that rely on statistical pattern classification to determine
most likely blocks of code given an observed power trace [2].

Specifically, these techniques seek to maximize the condi-
tional or a posteriori probability among all candidate frag-
ments given the power trace 1 produced by the execution of
the unknown fragment of code.

Several techniques exist and are commonly used to ac-
complish the above goal. Often, we do not have an explicit
(analytic or otherwise) description of the distribution of the el-
ements. In those cases, classification techniques use a training
database consisting of a set of S samples {X1,X2, · · · ,XS},
each of them labelled with the class to which the sample is
known to correspond. Classification for a given element is
done based on proximity (usually Euclidean distance) to the
database samples. The nearest centroid rule also uses a training
database of labelled samples; for each class Ck, the system
determines the centroid of all training samples with label Ck:

Xk =
1

Nk

Nk∑
n=1

Xn (1)

where Nk is the number of training samples with label Ck.
The classification decision for a given element X consists

of selecting the class corresponding to the centroid nearest to
X (also with Euclidean distance being the usual metric).

This is a key notion for our proposed technique: if we
consider a two-centroids scenario, the probability of misclas-
sification is related to distance between centroids. This proba-
bility is given by the area (or volume, in the multidimensional
case) under the curves corresponding to the probability density
functions taken from the equidistant point or region with
respect to the two centroids; the farther apart the centroids,
the smaller this probability should be, since we take a smaller
portion of the tails of the probability functions.

III. OUR PROPOSED TECHNIQUE

We now present the details of our proposed framework as well
as our implementation using LLVM with an ARM Cortex-M0
target architecture.

A. Reordering Instructions
The key aspect behind our technique is the relationship be-
tween sequences of individual instructions and the resulting
power trace. If we reorder the instructions in a program, the
power trace produced by the modified program will, in general,
be different. Since the classification process is based on
distinguishing power traces corresponding to different blocks
of code, our approach is based on the idea of reordering
instructions corresponding to the various blocks to make the
resulting power traces maximally distinguishable.

A trivial solution exists for this problem: we can always
introduce new and unnecessary instructions into the program
which have wildly different power signatures. Clearly, this
would not be an acceptable solution in most cases, due to
its detrimental effect on performance. For a solution to have
practical value, it should modify the program in such a way
that performance is affected the least. One way to ensure that

1 More specifically, given a noisy measurement of the power trace

performance is not drastically affected is to avoid introducing
new instructions, and instead only reorder the instructions that
are part of the original program.

We should also consider the fact that the classifier can take
advantage of information about the CFG of the program to
improve the classification process. The intuition is that if we
narrow down the candidate blocks considered by the classifier,
we should reduce the probability of misclassification. Thus, we
should focus on maximizing distinguishability between blocks
that can be candidates for the same classification instance.
This can only happen if the nodes have common predecessors;
after execution of a given block corresponding to a node in the
CFG, the classifier only considers the successors to the current
basic block. If we can increase the distance between power
traces corresponding to basic blocks that are the successor
nodes to the same block in the CFG, we can improve their
differentiability and lower the rate of misclassifications on the
program. Additionally, we want to increase the distance for
the nodes that are most easily misclassified without adversely
affecting our ability to correctly classify the nodes that are
already easy to distinguish.

Thus, our optimization task consists of increasing the dis-
tance between basic blocks and their siblings in the CFG. We
define a sibling to mean all of the successors of all of the
predecessors of a basic block in the CFG that are not the
block itself. It is important to consider sibling nodes in the
above sense rather than considering the successors of each
node. This is the case because a block may have more than
one predecessor in the CFG. If we only increase the distance
between the successors to a single basic block, we may do
so by decreasing the distance between those blocks and their
siblings from other predecessors. During classification, a basic
block may be a candidate together with any of its sibling
nodes since the set of candidate blocks depends on the specific
instance of execution.

To calculate this distance metric, the power trace of each
basic block can be broken down into the power traces of
its component instructions. Since a basic block consists of a
sequence of instructions with a single entry and a single exit
point, it can be thought of as a series of instructions which will
execute in order. Thus, the power trace of a basic block can be
conceived as the series of the power traces of its component
instructions, given that the power trace corresponds to power
consumption as a function of time. If we know the number of
clock cycles for every instruction to complete and we know
how much power they require on average, we can determine
the average power traces for basic blocks.

B. A Little Help from the Compiler
The process of reordering instructions described in the previ-
ous section was implemented in a compiler optimization stage.
We chose LLVM for its modularity and ease of modification,
and to make our modifications to the intermediate representa-
tion (IR) of the program.

Much work has been done in the area of modifying the
compilation of a program to change its power consumption.

Typically, the goal is to reduce the power consumption of the
program. There are several approaches to this problem, but
the most typical is to try to reduce transition activity in the
instruction bus by reducing the hamming distance between
instructions in the program [8], [9]. This is an effective way
to approach the problem, since it provides a simple heuristic
for which the code can be optimized and for which one
approach can be judged to be objectively better than another.
However, the problem is NP-Hard [8] and tends to discount
the many other factors in a processor. Other research has been
done into methods that require customized hardware, such as
optimizing the use of way-specific registers in multiple issue
digital signal processors [10] or by using a combination of
instruction packing, booth multiplier operand reordering [11].

Our approach is based on the idea of modifying the order
of the instructions. When run after most other optimizations,
instruction ordering gives us control over the power trace of
a basic block with low performance impact. Although some
basic blocks contain only instructions with data dependencies
between them, most contain some instructions which can be
reordered without changing the semantics of the program. To
do this, we needed more granular information about the power
used by instructions.

We created a framework for generating machine code cor-
responding to sequences of a single LLVM IR instruction.
Our goal was to modify the IR representation of the program,
but the power traces for instructions were CPU/MCU specific.
To be able to associate a power trace with an IR instruction
on a target, we need to profile the system: determine what
machine instructions are emitted by the LLVM backend for
a particular IR instruction on the particular target, and then
measure the power trace for that sequence of assembly-level
instructions. We generated assembly files representing 1000
executions of an IR instruction for most of the instructions
in the LLVM language and for most valid combinations of
operand sizes. Depending on the target, there could be large
variations between the number and type of instructions emitted
for different IR instructions.

These files were then run on the target hardware and their
power traces were recorded. To avoid issues with resolution
or accuracy in the measurements, each file consisted of 1000
repetitions of the same sequence of machine instructions
corresponding of one IR. We then divided the trace into 1000
sequences of measurements and took the mean of each index.
The resulting vector represents the given IR instruction for
the target. A number of examples of these vectors are given
in Figure 1. We will present a more detailed description in
Section IV, when describing the experimental setup.

A vector for a basic block can then be created by con-
catenating the traces of its instructions. We can calculate the
differentiability between two basic blocks as the distance be-
tween these two vectors. Because the length of each instruction
vector varies, it is not enough to simply add up the distance
between subsequent instruction traces. This is demonstrated
in Figure 1, which shows how different instructions can have
power traces with wildly different lengths.

6.036

6.040

6.044

0 100 200 300 400
Time (samples)

M
e

a
n

 o
f

s
a
m

p
le

d
 p

o
w

e
r

(m
W

)

Fig. 1. Instruction Trace Vectors

We define the distance of a basic block to be the average
of the square Euclidean distance between its power trace
and the power traces of its siblings in the CFG.2 When
evaluating the distance between two traces, we consider only
the initial portion of the traces that overlaps, since this is the
only meaningful way to compare traces when the classifier
is making a decision during normal operation. Given a basic
block b and the set of its sibling basic blocks Sb, where a
basic block consists of a vector representing its power trace
over time, the distance is given by:

distance(b) =
1

|Sb|
∑
s∈Sb

Ms∑
t=0

(b[t]− s[t])
2 (2)

where Ms , min(|b|, |s|).
We use an iterative, greedy algorithm to improve the total

distance of a program until a threshold is reached. The
algorithm starts by iterating over each basic block in the CFG
and finding its sibling nodes. It then begins the main loop,
which starts by placing all of the basic blocks into a list
sorted by their distance. The block with the lowest distance is
then chosen and all valid permutations of its instructions are
checked and its instruction order is changed to the permutation
with the highest distance. A valid permutation means that
the semantics of the basic block are not changed, so the
order of instructions with data dependencies is preserved.
Because this validity restriction drastically reduces the number
of possibilities, it becomes practical to search all permutations
for a moderately large basic block. Once the block is reordered
and its siblings are removed from the list, the block with the
next lowest distance in the list is chosen to repeat the process.
Once the list becomes empty, it is repopulated and sorted until
the change in total distance of the program drops below some
specified threshold. Algorithm 1 shows the details of this
optimization procedure.

C. Example
As a contrived example let us look at the C code in Figure 2
which is part of a program that we would like to classify.
It contains two basic blocks which are siblings in the CFG.
Figure 2 also shows the equivalent LLVM IR generated by the
LLVM program clang.

2 This is a common optimization in pattern recognition techniques, where
comparing square distances yields the same result as comparing distances
without incurring a square root computation.

Algorithm 1 Optimization Algorithm
1: procedure REORDER(CFG, threshold)
2: for block ∈ CFG do
3: for pred ∈ block.predecessors do
4: block.siblings← pred.successors \ block
5: do
6: BBList← CFG.blocks
7: Sort BBList, ranked by distance
8: while BBList 6= ∅ do
9: block ← BBList[0]

10: for p ∈valid permutations of block do
11: if distance(p) > distance(block) then
12: block ← p

13: BBList← BBList \ {block}
14: BBList← BBList \ block.siblings
15: while ∆

∑
distance(block ∈ BBList) < threshold

if (x < y)
{ if.then:
x = x + z; %add = add nsw i16 %z, %x ← will be
y = y << z; %shl = shl i16 %y, %z ← reordered
x = x & y; %and = and i16 %add, %shl

} br label %if.end
else
{ if.else:
y = y + z; %add2 = add nsw i16 %z, %y
x = x << z; %shl2 = shl i16 %x, %z
x = x & y; %and2 = and i16 %shl2, %add2

} br label %if.end

Fig. 2. C code and equivalent LLVM IR

Even without knowing the power traces for any of the
instructions, we can see that the two basic blocks are similar,
so they will be difficult to differentiate. In fact, looking only
at the type of instruction and the sizes of its operands, these
two blocks are identical. When the algorithm is run on this
program, one of these two blocks is sorted to the top of the list
to be rearranged first, because the distance to its siblings is 0.
Then when different permutations of the block are tried, they
are limited because of data dependencies. The br instruction
cannot be moved, because it is the terminating instruction for
each basic block and must come at the end, and the and
instruction before it depends on the results of the other two
instructions so it cannot come before either of them. Only the
add and shl instructions can be moved, so the algorithm
chooses to change their order in the first basic block.

IV. EXPERIMENTAL SETUP

The key aspect in our experiments was the capture of power
traces corresponding to the execution of basic blocks. This
introduced an important difficulty, since we needed to run the
fragments of code in the natural sequence as they occurred
in the program to obtain good accuracy in the measurements.
This is due to the fact that power consumption may be affected
by low-level hardware features such as pipelines and internal
state transitions; thus, if we execute fragments of code in
isolation, the power consumption may not reflect the actual
power consumption during operation.

To this end, we created two instrumented versions of the
programs; one of them executes on the target and uses a GPIO
pin to signal transitions between BBs by toggling the pin.
The instrumentation simply places a pin-toggle statement at

the beginning of each BB. We capture power traces through
the Line-In input of a standard PC sound card. This idea
was introduced in [1]. Unlike in that work, we used the two
channels of the stereo sound card input so that one of the stereo
channels captures power consumption and the other channel
captures the markers. Figure 3 shows an example of a captured
trace. The system automatically detects the positions of the

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
ig

it
iz

e
d

 V
a

lu
e

s

Time Index

Power
Markers

Fig. 3. Example of Captured Power Trace with Markers

markers by identifying pairs of nearby local maximum and
minimum, and finally determine the position of the inflection
point between these two extreme points. We used the standard
numerical approximations of the derivatives to determine the
point at which the second derivative changes sign [12].

The second instrumented version contains print statements
and it is executed offline on a workstation. We used a pseu-
dorandom number generator (PRNG) to generate inputs for
the functions. By seeding the PRNG with the same seed value
in both instrumented versions, we ensure that the execution
trace will be the same, since the input data is the same in
both cases. This allows us to match the segments of the trace
(separated by the markers) against the BB labels that are output
by the print-instrumented version, and thus we are able to label
each of the power trace segments with the BB to which they
correspond. To guarantee that this was the case, we coded a
custom PRNG, thus avoiding the risk that the standard library
random facilities could vary between compilers. We used a
linear congruential generator with 64-bit state following the
standard conditions to maximize the period [13].

The benefit of obtaining this set of labeled power traces
is twofold: (1) we use these labeled samples for the training
database. And (2) we can determine the precision of the system
(the rate of correct classifications): the experiment runs the
classifier feeding the sample without labeling and can compare
the output of the classifier against the known label associated
to the sample. We emphasize the aspect that the experiments
always use different samples for the training database and
for obtaining the classifier’s precision. In particular, different
samples of the power traces always correspond to executions
with different input data.

V. EXPERIMENTAL RESULTS

The main goal and focus of our experiments is to demonstrate
the difference in the classifier’s precision as a consequence of
the modifications done by the compiler through the optimizing
stage that reorders the IR instructions. The precision P is
defined as the rate of true positives. This parameter fully

describes the performance of the classifier, since we do not
have false negatives (the classifier always outputs something)
and thus the notion of recall is not applicable to our case.

P ,
#CC

#CC +#IC
(3)

where #CC denotes the number of correct classifications
(true positives), and #IC denotes the number of incorrect
classifications (false positives).

As auxiliary measurements that are directly associated to
the manipulations that the compiler performs, we also report
distances between centroids, both synthetic (distances between
the traces constructed by the compiler while evaluating the
reorderings) and obtained from actual measurements on the
target. We also created an additional version of the compiler
that chooses the estimated worst reorderings; thus, minimizing
distances between power traces instead of maximizing them.
The purpose of this is to demonstrate the potential effect of
these changes in the distances between traces.

We ran each of the MiBench functions 1000 times, obtaining
a total number of segments (corresponding to individual execu-
tions of BBs) of a little above 1.3 million. Many of the traces,
however, correspond to blocks that are too small, and thus we
omitted them from the reported results, as they are far too
many and add little value since the compiler is limited in how
much it can reorder small blocks. To evaluate the precision,
we partitioned the sets of power traces corresponding to each
BB into two sets. We used one of the sets to construct
the training database — essentially, to obtain the centroids for
each class (each BB) — and the other set to run the classifier
and obtain the precision. We used a process similar to
bootstrapping [14] to obtain a good statistical representation
of the parameters, including the obtained averages as well
as confidence intervals (we report 95% confidence intervals).
The process consisted of sampling with replacement, where
the partitioning is done multiple times, randomly splitting the
set into the two partitions. This corresponds to taking random
samples of the population of power traces to run them through
the classifier with the rest of the power traces being used to
construct the training database.

Table I summarizes the results, including execution of AES
encryption and the SHA update function, part of the Security
section of MiBench [15]. The ± figures indicate the 95%
confidence interval for the given parameter.

TABLE I
CLASSIFIER PARAMETERS

Precision Dist. between centroids

AES encrypt
Unoptimized 56.53% ± 0.26 118753
Optimized 63.76% ± 0.3 259506

SHA update
Unoptimized 99.0% ± 0.04 1855802
Optimized 98.83% ± 0.05 1839577

ADPCM coder
Unoptimized 58.11% ± 0.22 130781
Optimized 59.19% ± 0.19 144209

We can draw some important insights from these results.
We observe that the effect of the technique varies for different
functions. Perhaps surprisingly, for the SHA blocks, the tech-
nique reduced the precision. However, the ranges are so close
that the difference may be due to measurement or experimental
artifacts. Also, with the code being so highly distinguishable
in its normal form, we can suspect that the reorderings that
the optimizer did were in a sense “driven by noise”.

The results for AES, on the other hand, show a remarkable
and favorable aspect: the fragment of code below (from
MiBench’s aes.c) shows the two sibling nodes for.body
and for.end corresponding to the body of the loop and the
statement that follows the loop:

for(rnd = 0; rnd < cx->Nrnd - 1; ++rnd)
{

round(fwd_rnd, b1, b0, kp);
l_copy(b0, b1); kp += nc;

}
round(fwd_lrnd, b0, b1, kp);

We observe that the two blocks are essentially identical
(fwd_rnd and fwd_lrnd are two macros that expand to
the same code, using different data). It is expected that the
unoptimized code produced by the compiler would be essen-
tially identical, and the precision greater than 50% could be
a result of low-level hardware features that cause a difference
between the trace when execution remains within the loop vs.
when it leaves the loop.

The results show that the reordering of the instructions
corresponding to those blocks plays an important role in
the distinguishability between those two otherwise identical
blocks. Even though 63.76% is not a particularly high preci-
sion, it is still a remarkable result considering that we achieve a
reasonable level of distinguishability between two blocks that
are normally almost indistinguishable. We should also remark
the fact the these blocks are short and thus obtaining a high
precision is challenging. This could be compensated for by
using CFG expansion to classify based on distances for longer
sequences of blocks. This is, however, beyond the scope of this
work and is an area that would benefit from future research.

Our results also include computed values corresponding to
parameters obtained by the compiler during the optimization
stage. Specifically, we computed the total distance for some
programs in the MiBench suite before and after optimization
by our compiler stage. We also reversed the optimization
in order to minimize the total distance, generating the least
distinguishable version of a program. The increase against
the default case represents the improvement in distance over
instruction ordering that the compiler generated with no inter-
vention, while the increase against the worst case represents
the improvement in distance over the least distinguishable
version. In the case of adpcm.c for ARM, the default case
that the compiler generated was indeed the worst case, which
is why the increase in distance over them is identical. Table II
shows these values. For example, the first row shows that,
for the benchmark adpcm.c the improvement for ARM was
21.4% above both the default and worst case versions, while

the improvement for AVR was 6.15% over the default and
16% over the worst case.

TABLE II
IMPROVEMENT IN DISTANCE METRIC FROM OPTIMIZATION

Bench % Increase (default) % Increase (worst)

ARM AVR ARM AVR

adpcm.c 21.4 6.15 21.4 16.0
aes.c (unrolled) 94.2 120.3 105.9 123.2
aes.c 159.4 272.0 186.4 275.6
crc 32.c 8.27 18.97 120.6 60.2
fftmisc.c 8.24 2.37 18.6 15.9
sha.c 58.2 13.14 121.2 27.2

VI. DISCUSSION AND SUGGESTED WORK

Many interesting aspects were observed during the design and
implementation of the experiments, as well as from the results
obtained. Perhaps the most interesting aspect to discuss is the
effect of the code structure and size on the effectiveness of our
technique. The precisions obtained for the various functions
exhibit large variations. The results, combined with inspection
of the various fragments of code being considered, suggest
that it is mostly the structure and size of the code that can
have a bigger impact on the potential effectiveness of the
method. We still claim that the technique is valuable and
has a tremendous potential for applicability in practice. One
can reasonably expect actual code in real-life applications to
include fragments with varying characteristics and structure.
Thus, for practical applications, we believe that the technique
is bound to work well for a fraction of the blocks being
considered, and have little or no effect for the rest, leading
to a net increase in the overall performance. Further research
could be valuable in getting a more definitive answer to these
claims. Additional research could also uncover patterns or
relationships between characteristics of the source code and
the effectiveness of the technique.

Additional techniques related to the use of the CFG for
classification of sequences could help obtain a high precision
even at the fine granularity level of basic blocks in the CFG.
It would be interesting to study the interaction between our
proposed technique and any approaches that the classification
system could adopt as means to increase either the perfor-
mance or the computational efficiency (or both).

Future research is also suggested for the purpose of devel-
oping more effective and efficient optimization algorithms that
would be applicable in the context of our framework.

VII. CONCLUSIONS

In this work, we presented a novel approach for increasing the
effectiveness of power-based program tracing techniques. We

As a last remark, it is worth noting that another potential
application of our proposed technique is the creation of a rogue
(malicious) compiler that could manipulate code generation
to facilitate side-channel analysis, in particular power analy-
sis [16], on devices with binaries created by such compiler.
Embedded systems security engineers should be aware of this
aspect, even if its applicability in practice may be a remote
possibility.

showed that by reordering instructions we gain some control
over the power traces and can choose reorderings that lead to
power traces that are maximally distinguishable. Experimental
results confirmed that our approach is viable and has potential
applicability in practice.

Important insights were gained from the design of the
experiments, implementation, and results. Since this paper
introduces a novel idea that can potentially address important
problems in the field of embedded systems and in particular
embedded systems security, there are many opportunities for
future work. As part of this work, we highlighted some of
these areas where additional research may prove valuable.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable suggestions and ideas, Brad Lushman and Nomair
Naeem for their advice on compiler optimizations, and Aaron
Severance for suggesting a comparison against the worst-case.

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada and the Ontario
Research Fund.

REFERENCES

[1] C. Moreno, S. Fischmeister, and M. A. Hasan, “Non-intrusive Program
Tracing and Debugging of Deployed Embedded Systems Through Side-
Channel Analysis,” LCTES’13, pp. 77–88, 2013.

[2] A. R. Webb and K. D. Copsey, Statistical Pattern Recognition, 3rd ed.
Wiley, 2011.

[3] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a Side Channel
Based Disassembler.” Springer Berlin Heidelberg, 2010, pp. 78–99.

[4] S. S. Clark et al., “WattsUpDoc: Power Side Channels to Nonintrusively
Discover Untargeted Malware on Embedded Medical Devices,” USENIX
Workshop on Health Information Technologies, 2013.

[5] C. N. Fischer, R. K. Cytron, and R. J. L. Jr., Crafting a Compiler.
Addison-Wesley, 2009.

[6] C. Lattner and the LLVM Developer Group, “The LLVM Compiler
Infrastructure – online documentation,” http://llvm.org.

[7] Atmel Corporation, “SAM D ARM Cortex-M0+ Microcontrollers,”
2015, http://www.atmel.com/products/microcontrollers/arm/sam-d.aspx.

[8] C. Lee, J. K. Lee, and T. Hwang, “Compiler Optimization on Instruction
Scheduling for Low Power,” in International Symposium on System
Synthesis, 2000, pp. 55–60.

[9] N. Chabini and M. Wolf, “Reordering the assembly instructions in basic
blocks to reduce switching activities on the instruction bus,” Computers
Digital Techniques, IET, vol. 5, no. 5, pp. 386–392, September 2011.

[10] Y.-C. Ma, T.-A. Liu, and W.-S. Chao, “Energy-Aware Compiler Opti-
mization for VLIW-DSP Cores,” in Advances in Intelligent Systems and
Applications - Volume 2. Springer Berlin Heidelberg, 2013, vol. 21.

[11] M.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and
Minimization Techniques for Embedded DSP Software,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 1997.

[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C, Second ed. Cambridge University Press, 1992.

[13] D. E. Knuth, The Art of Computer Programming. Volume 2: Seminu-
merical Algorithms, Third ed. Addison-Wesley, 1998.

[14] A. J. Canty, “Resampling methods in R: the boot package,” R News,
vol. 2, no. 3, pp. 2–7, 2002.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite.” IEEE Computer Society, 2001.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances
in Cryptology – CRYPTO’ 99, pp. 388–397, 1999.

